Photodefinable Benzocyclobutene Formulations for Thin Film Microelectronic Applications. III. 1 to 20 Micron Patterned Films

1993 ◽  
Vol 323 ◽  
Author(s):  
E. S. Moyer ◽  
G. S. Becker ◽  
E. W. Rutter ◽  
M. Radler ◽  
J. N. Bremmer ◽  
...  

AbstractNegative working photodefinable benzocyclobutene formulations capable of obtaining patterned dielectric films from 1 to 20 microns thick are being developed using bisaryl azides as photocrosslinkers. Three different formulations are used to cover this range of film thicknesses. The formulations are very sensitive to the 365 nm and 405 nm wavelengths of light (i-line and h-line) of the high pressure mercury spectrum and require low exposure doses to produce resolved patterns. Twenty five micron round and square vias with sloping sidewalls (geometry good for metallization) have been successfully patterned in 10 micron thick films. The photodefined patterns can be obtained with good film retention using several developing solvents including: Stoddard solvent, ProglydeTM DMM, and n-butyl butyrate.

2020 ◽  
Author(s):  
Ruobin Dai ◽  
Hongyi Han ◽  
Tianlin Wang ◽  
Jiayi Li ◽  
Chuyang Y. Tang ◽  
...  

Commercial polymeric membranes are generally recognized to have low sustainability as membranes need to be replaced and abandoned after reaching the end of their life. At present, only techniques for downcycling end-of-life high-pressure membranes are available. For the first time, this study paves the way for upcycling fouled/end-of-life low-pressure membranes to fabricate new high-pressure membranes for water purification, forming a closed eco-loop of membrane recycling with significantly improved sustainability.


2003 ◽  
Vol 766 ◽  
Author(s):  
Jin-Heong Yim ◽  
Jung-Bae Kim ◽  
Hyun-Dam Jeong ◽  
Yi-Yeoul Lyu ◽  
Sang Kook Mah ◽  
...  

AbstractPorous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).


1998 ◽  
Vol 84 (9) ◽  
pp. 5198-5201 ◽  
Author(s):  
W. S. Li ◽  
Z. X. Shen ◽  
D. Z. Shen ◽  
X. W. Fan
Keyword(s):  

Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 736 ◽  
Author(s):  
Guodong Zhang ◽  
Yulong Zhao ◽  
Yun Zhao ◽  
Xinchen Wang ◽  
Xueyong Wei ◽  
...  

2010 ◽  
Author(s):  
M. Sendova-Vassileva ◽  
K. Baumgartner ◽  
O. Angelov ◽  
B. Holländer ◽  
D. Dimova-Malmovska ◽  
...  

2015 ◽  
Vol 1120-1121 ◽  
pp. 424-428
Author(s):  
C.Y. Zou ◽  
Lai Sen Wang ◽  
Xiang Liu ◽  
Q.F. Zhang ◽  
Jun Bao Wang ◽  
...  

In this paper, we studied the dependence of temperature and weak localization (WL) effect on the anomalous Hall effect (AHE) in strong disordered and poorly crystallized metal Co thin film deposited by high-pressure magnetron sputtering. The temperature coefficients of resistivity is positive at high temperatures and becomes negative at low temperatures, which is the typical characteristic of weak localization effect in dirty metal regime due to the strong disorder. The saturation anomalous Hall resistivity (ρAxy) have no scaling relation between ρxy and ρxx in weak localization region with temperature below 50 K. In metal region, temperature ranged from 50 K to 300 K, the relation between ρAxy and ρxxis ρAxy=A+bρ2xx, which indicates that the AHE in this Co thin film is scattering-independence at high temperature. The results also shows that the WL effect have a significant impact on the AHE of the Co thin film at low temperature.


Sign in / Sign up

Export Citation Format

Share Document