Electromigration Damage in Conductor Lines: Recent Progress in Microscopic Observation and Mechanistic Modelling

1994 ◽  
Vol 338 ◽  
Author(s):  
E. Arzt ◽  
O. Kraft ◽  
U.E. MÖckl

ABSTRACTIn this paper an overview of recent developments in understanding electromigration damage mechanisms is given. Based on our detailed studies, both ex-situ and in-situ, of damage in unpassivated near-bamboo lines, we develop a theoretical electromigration damage map. It explains why “slit-like” failure becomes predominant for narrow lines and low current densities. The mechanism of slit formation is discussed in the light of new analytical and numerical simulations of pore shape changes, which take stress effects into account. Possible implications for the rational design of improved metallization alloys are suggested.

Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 457 ◽  
Author(s):  
Sher Ling Lee ◽  
Chi-Jung Chang

Metal sulfide-based photocatalysts have gained much attention due to their outstanding photocatalytic properties. This review paper discusses recent developments on metal sulfide-based nanomaterials for H2 production, acting as either photocatalysts or cocatalysts, especially in the last decade. Recent progress on key experimental parameters, in-situ characterization methods, and the performance of the metal sulfide photocatalysts are systematically discussed, including the forms of heterogeneous composite photocatalysts, immobilized photocatalysts, and magnetically separable photocatalysts. Some methods have been studied to solve the problem of rapid recombination of photoinduced carriers. The electronic density of photocatalysts can be investigated by in-situ C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra to study the mechanism of the photocatalytic process. The effects of crystal properties, nanostructure, cocatalyst, sacrificial agent, electrically conductive materials, doping, calcination, crystal size, and pH on the performance of composite photocatalysts are presented. Moreover, the facet effect and light trapping (or light harvesting) effect, which can improve the photocatalytic activity, are also discussed.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1933
Author(s):  
Adit Sharma ◽  
Vladislav Zadorozhnyy

Metallic glasses are known for their mechanical properties but lack plasticity. This could be prevented by combining them with other materials or by inducing a second phase to form a composite. These composites have enhanced thermo-physical properties. The review paper aims to outline a summary of the current research done on metallic glass and its composites. A background in the history, properties, and their applications is discussed. Recent developments in biocompatible metallic glass composites, fiber-reinforced metallic glass, ex situ and in situ, are discussed.


2005 ◽  
Vol 2005 (1) ◽  
pp. 693-696 ◽  
Author(s):  
Christopher B. Fuller ◽  
James S. Bonner ◽  
Frank Kelly ◽  
Cheryl A. Page ◽  
Temitope Ojo

The current SMART protocol used by the U.S. Coast Guard relies on traditional ex-situ fluorometers that require physical transport of the sample from the water column to the instruments. While sample transport methods are available (e.g. pumps and discrete sampling), they introduce time lags in the data acquisition process. These lags can be a source of error when the data is post analyzed and is not conducive to real-time monitoring efforts, creating significant logistical problems and dispersion (smearing) of the sample stream. Another limitation of the currently-used equipment is that it requires much attention to manually record GPS data which is later used to determine the spatial distribution of an oil plume. Recent developments of in-situ fluorometric instrumentation promise to simplify problems associated with deployment of ex-situ instrumentation (e.g. insuring that pumps are primed) in boat-based field applications. This study first compares the performance of two in-situ fluorometers in a simulated oil and dispersant application at the Shoreline Environmental Research Facility at Texas A&M University in Corpus Christi, Texas. The fluorometers were the WETStar and the ECP-FL3 (both by WETLabs, Inc.). To address issues related to data collection from a GPS and a fluorometer, a system was developed that simultaneously merges data from both instruments into a single file and presents the data real-time as a color-coded ship track. The applicability of this system was tested and evaluated during a spill response exercise conducted by the Texas General Land Office and the U.S. Coast Guard in Galveston Bay, Texas, U.S.A.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3364 ◽  
Author(s):  
Kefeng Pan ◽  
Yingying Zhai ◽  
Jiawei Zhang ◽  
Kai Yu

Electrolytic water splitting with evolution of both hydrogen (HER) and oxygen (OER) is an attractive way to produce clean energy hydrogen. It is critical to explore effective, but low-cost electrocatalysts for the evolution of oxygen (OER) owing to its sluggish kinetics for practical applications. Fe-based catalysts have advantages over Ni- and Co-based materials because of low costs, abundance of raw materials, and environmental issues. However, their inefficiency as OER catalysts has caused them to receive little attention. Herein, the FeS2/C catalyst with porous nanostructure was synthesized with rational design via the in situ electrochemical activation method, which serves as a good catalytic reaction in the OER process. The FeS2/C catalyst delivers overpotential values of only 291 mV and 338 mV current densities of 10 mA/cm2 and 50 mA/cm2, respectively, after electrochemical activation, and exhibits staying power for 15 h.


2006 ◽  
Vol 47 ◽  
pp. 131-136 ◽  
Author(s):  
Pavol Kováč ◽  
I. Hušek ◽  
T. Melišek

Generally, two basic routes called as in-situ and ex-situ process are used for composite MgB2 wires now. Mentioned processes have been used for making of single-core composite wires. The applied heat treatment parameters influence the microstructure of MgB2 phase, critical temperature and critical current density, but it has also decisive effect on the MgB2/metal reaction. It was found that the transport current densities are much more sensitive to the used sheath material than critical temperatures. The main factors limiting the transport current density are cracks introduced by deformation and porosity caused by the boron diffusion in ex-situ and in-situ wires, respectively.


1998 ◽  
Vol 13 (8) ◽  
pp. 2057-2066 ◽  
Author(s):  
A. P. Bramley ◽  
C. R. M. Grovenor ◽  
M. J. Goringe ◽  
J. D. O'Connor ◽  
A. P. Jenkins ◽  
...  

We have developed a process for the fabrication of (001) oriented SrTiO3 buffer layers onto (001) MgO substrates by rf magnetron sputtering followed by a post-deposition heat treatment in air. Precursor films with Tl :Ba : Ca : Cu ratio 2 : 2 : 2 : 3 were deposited by dc magnetron sputtering onto both these buffered substrates and directly onto (001) SrTiO3 single-crystal substrates, and thalliated at elevated temperatures. Because of Sr diffusion from the substrate/buffer layer, and its subsequent substitution for Ba in the superconducting film, the single Tl–O layer phase Tl(Ba1−xSrx)2Ca2Cu3Oy was stabilized. Diffusion of Ba and Ca in the opposite direction led to the formation of a Ba–Ca–Ti–O compound at the interface. The Tl(Ba1xSrx)2Ca2Cu3Oy films typically have superconducting transition temperatures (Tc's) > 103 K and critical current densities (Jc's) > 2.9 × 105 A cm−2 at 77 K. Rs values measured on these films and scaled to 10 GHz were 3.0 mΩ at 80 K and <200 µΩ at 50 K for the film grown on SrTiO3 buffered MgO, and 2.0 mΩ and 1.0 mΩ at 50 K for the film grown directly onto the (001) SrTiO3 substrate. Films fabricated on (001) SrTiO3 using an in situ deposition technique with a substrate temperature around 100 °C lower than the ex situ thalliation temperature showed no evidence of an interfacial reaction layer.


2006 ◽  
Vol 78 (10) ◽  
pp. 1823-1834 ◽  
Author(s):  
Hiroshi Sugimoto ◽  
Shohei Inoue

The alternating copolymerization of carbon dioxide and epoxide to give polycarbonate has attracted the attention of many chemists, because it is one of the most promising methodologies for the utilization of carbon dioxide as a safe, clean, and abundant raw material in the synthetic chemistry. Recent developments of the catalysts for the alternating copolymerization are based on the rational design of metal complexes, especially complexes of transition metal with well-defined structures.


2021 ◽  
Vol 29 (4) ◽  
pp. 454-469
Author(s):  
Oindrila Paul ◽  
Amrita Jasu ◽  
Dibyajit Lahiri ◽  
Moupriya Nag ◽  
Rina Rani Ray

Enhanced population growth, rapid industrialization, urbanization and hazardous industrial practices have resulted in the development of environmental pollution in the past few decades. Heavy metals are one of those pollutants that are related to environmental and public health concerns based on their toxicity. Effective bioremediation may be accomplished through “ex situ” and “in situ” processes, based on the type and concentration of pollutants, characteristics of the site but is not limited to cost. The recent developments in artificial neural network and microbial gene editing help to improve “in situ” bioremediation of heavy metals from the polluted sites. Multi-omics approaches are adopted for the effective removal of heavy metals by various indigenous microbes. This overview introspects two major bioremediation techniques, their principles, limitations and advantages, and the new aspects of nanobiotechnology, computational biology and DNA technology to improve the scenario.


RSC Advances ◽  
2021 ◽  
Vol 11 (54) ◽  
pp. 33835-33848
Author(s):  
Chujia Li

This review constructed a framework of methodologies to summarize the recent progress of high-performance conductive hydrogels for flexible electronics and further provide novel insights about rational design of the advanced hydrogels.


Sign in / Sign up

Export Citation Format

Share Document