RuO2 Thin Films as Bottom Electrodes for High Dielectric Constant Materials

1994 ◽  
Vol 343 ◽  
Author(s):  
K. Yoshikawa ◽  
T. Kimura ◽  
H. Noshiro ◽  
S. Ohtani ◽  
M. Yamada ◽  
...  

ABSTRACTRuthenium dioxide (RuO2) thin films are evaluated as bottom electrode for dielectric SrTiO3. It was found that a RuO2 (50nm) / Ru (20nm) barrier layer on a Si substrate is effective as an oxygen barrier layer and as a metal diffusion barrier layer for sputter deposited SrTiO3 films at substrate temperature of 450°C. To test suitability for high temperature processes, RuO2/Ru electrodes were annealed in air at 600°C. 100nm-thiick RuO2 was sufficient to prevent oxygen diffusion. After annealing in the same condition, the leakage current of sputter deposited SrTiO3 (150nm) on RuO2(50nm) / Ru(50nm) was 7.6 × 10 −9 (A/cm2) at 2V.

1997 ◽  
Vol 12 (5) ◽  
pp. 1176-1178 ◽  
Author(s):  
A. T. Chien ◽  
J. S. Speck ◽  
F. F. Lange

Pb(ZrxTi1−x)O3 and PbZrO3 heteroepitaxial thin films were produced in an aqueous solution (10 M KOH) at ambient pressure and low temperatures (90–150 °C) on (001) SrTiO3 and LaAlO3 single crystal substrates. Growth of the Pb(ZrxTi1−x)O3 and PbZrO3 thin films initiates by the formation of {100} faceted islands. Energy dispersive spectroscopy (EDS) analysis of the Pb(ZrxTi1−x)O3 thin film shows that the Zr: Ti ratio is 45: 56, nearly identical to the molar ratio of the precursors. This route might provide a viable low temperature alternative for the formation of high dielectric constant thin films for applications such as dynamic random access memory (DRAM).


2013 ◽  
Vol 22 ◽  
pp. 564-569
Author(s):  
KANTA RATHEE ◽  
B. P. MALIK

Down scaling of complementary metal oxide semiconductor transistors has put limitations on silicon dioxide to be used as an effective dielectric. It is necessary to replace the SiO 2 with a physically thicker layer of oxides of high dielectric constant. Thus high k dielectrics are used to suppress the existing challenges for CMOS scaling. Many new oxides are being evaluated as gate dielectrics such as Ta2O5 , HfO2 , ZrO2 , La2O3 , HfO2 , TiO2 , Al2O3 , Y2O3 etc but it was soon found that these oxides in many respects have inferior electronic properties to SiO2 . But the the choice alone of suitable metal oxide with high dielectric constant is not sufficient to overcome the scaling challenges. The various deposition techniques and the conditions under which the thin films are deposited plays important role in deciding the structural and electrical properties of the deposited films. This paper discusses in brief the various deposition conditions which are employed to improve the structural and electrical properties of the deposited films.


1996 ◽  
Vol 446 ◽  
Author(s):  
Tingkai Li ◽  
Pete Zawadzkp ◽  
Richard A. Stall ◽  
Yongfei Zhu ◽  
Seshu B. Desu

AbstractNanoscale oxide thin films such as Ba1‐xSrxTiO3 (BST), SrBi2Ta2O9 (SBT), and PbZr1‐xTixO3 (PZT) that have a high dielectric constant and excellent ferroelectric properties have been receiving greatly increased attention, especially for high density memories in next generation integrated circuits. However, with increasing deposition temperature the surface roughness of the films increases, which results in high leakage current, and when the thickness of oxide films is decreased, the apparent bulk‐like properties of thin films tend to worsen due to the increased influence of the interface. To solve these problems, novel MOCVD techniques, plasma enhanced deposition, and a two step process, were developed for high quality oxide thin films.


2002 ◽  
Vol 720 ◽  
Author(s):  
T.S. Kalkur ◽  
Woo-Chul Yi ◽  
Elliott Philofsky ◽  
Lee Kammerdine

AbstractMg- doped Ba0.96 Ca0.04 Ti0.84Zr0.16O3 (BCTZ) thin films were fabricated on Pt/MgO substrate by metallorganic decomposition method. The structure of the films were analyzed by x-ray diffraction. The electrical measurements were performed on metal-ferroelectric-metal capacitors with platinum as the top and bottom electrode. The dielectric properties were improved after the capacitors were post annealed at 700 °C in oxygen atmosphere for 30 min. A high dielectric constant of 504 and a dissipation factor of less than 4% was obtained at 1 MHz. The Pt/BCTZ/Pt/MgO capacitors exhibited high tunability of 55% at an applied field of 55 kV/cm.


2007 ◽  
Vol 414 (2) ◽  
pp. 155-158
Author(s):  
V. G. Myagkov ◽  
V. S. Zhigalov ◽  
S. F. Lomaeva ◽  
L. E. Bykova ◽  
G. N. Bondarenko

Sign in / Sign up

Export Citation Format

Share Document