Preparation and Characterization of PMN (PbMgxNb1−xOz) Films by Sputtering

1994 ◽  
Vol 361 ◽  
Author(s):  
J.S. Cross ◽  
M. Tsukada ◽  
K. Kurihara ◽  
N. Kamehara ◽  
K. Niwa

ABSTRACTThin films of Pb(MgxNb1−x)Oz were produced by reactive sputtering from a lead target and columbite magnesium niobate powder targets at temperatures of 500–700°C on Pt/Ti/Si, Pt/SiO2/Si, MgO(lOO) and SrTiO3(100) substrates. The films in general deposited on Pt consisted of PbO and pyrochlore phases depending upon the deposition temperature. ICP analysis revealed that the films contained slightly less Mg than the target. This was attributed to negative ion preferential resputtering of the film within the discharge. However, films deposited at 650°C on MgO and SrTiO3 substrates from a lead target and magnesium niobate target which contained excess MgO, contained a highly oriented perovskite (100) Pb(Mg1/3Nb2/3)O3 [PMN] phase according to X-ray diffraction analysis. It was observed that the substrate composition and orientation greatly influenced the crystallinity of the deposited films.

2014 ◽  
Vol 92 (7/8) ◽  
pp. 902-904 ◽  
Author(s):  
N. Seña ◽  
F. Mesa ◽  
A. Dussan ◽  
G. Gordillo

This work reports results concerning the effect of the deposition parameters on the structural properties of Cu2ZnSnSe4 thin films, grown through a chemical reaction of the metallic precursors via coevaporation in a three-stage process. X-ray diffraction measurements revealed that the samples deposited by selenization of Cu and Sn grow in the Cu2Se and SnSe2 phases, respectively. The effect of deposition temperature and Cu/Se mass ratio on the transport properties of Cu2ZnSnSe4 films was analyzed. The electrical behavior of the compound was studied.


2013 ◽  
Vol 543 ◽  
pp. 277-280
Author(s):  
Marius Dobromir ◽  
Alina Vasilica Manole ◽  
Simina Rebegea ◽  
Radu Apetrei ◽  
Maria Neagu ◽  
...  

Rutile N-doped TiO2thin films were grown by RF magnetron sputtering on amorphous and crystalline substrates at room temperature. The surface elemental analysis, investigated by X-ray photoelectron spectroscopy indicated that the nitrogen content of the films could be adjusted up to values as high as 4.1 at.%. As demonstrated by the X-ray diffraction data, the as-deposited films (100 200 nm thick) showed no detectable crystalline structure, while after successive annealing in air for one hour at 400°C, 500°C and 600°C, the (110) rutile peaks occurred gradually as dominant features. The rutile phase in the films was confirmed by the band gap values of the deposited materials, which stabilized at 3.1 eV, for the thin films having 200 nm thicknesses.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.


1990 ◽  
Vol 37 (1) ◽  
pp. 141-144
Author(s):  
Tsunekazu Iwata ◽  
Akihiko Yamaji ◽  
Youichi Enomoto

2005 ◽  
Vol 892 ◽  
Author(s):  
Qianghua Wang ◽  
Jianzeng Xu ◽  
Changhe Huang ◽  
Gregory W Auner

AbstractThis paper reports the fabrication and characterization of micromachined ultrasonic transducers (MUT) based on piezoelectric aluminum nitride (AlN) thin films. The MUT device is composed of an Al/AlN/Al sandwiched structure overlaid on top of a silicon (Si) diaphragm. X-ray diffraction (XRD) scan shows that highly c-axis oriented AlN (002) thin films have been grown on Al/Si(100) substrates. Electrical impedance of the MUT devices is analyzed as a function of frequency. The fundamental resonant frequencies of the devices are found in the range of 65-70 kHz, which are in approximation to the theoretical calculation. The effective coupling factors of the devices are also derived as 0.18.


2012 ◽  
Vol 60 (1) ◽  
pp. 137-140 ◽  
Author(s):  
RI Chowdhury ◽  
MS Islam ◽  
F Sabeth ◽  
G Mustafa ◽  
SFU Farhad ◽  
...  

Cadmium selenide (CdSe) thin films have been deposited on glass/conducting glass substrates using low-cost electrodeposition method. X-ray diffraction (XRD) technique has been used to identify the phases present in the deposited films and observed that the deposited films are mainly consisting of CdSe phases. The photoelectrochemical (PEC) cell measurements indicate that the CdSe films are n-type in electrical conduction, and optical absorption measurements show that the bandgap for as-deposited film is estimated to be 2.1 eV. Upon heat treatment at 723 K for 30 min in air the band gap of CdSe film is decreased to 1.8 eV. The surface morphology of the deposited films has been characterized using scanning electron microscopy (SEM) and observed that very homogeneous and uniform CdSe film is grown onto FTO/glass substrate. The aim of this work is to use n-type CdSe window materials in CdTe based solar cell structures. The results will be presented in this paper in the light of observed data.DOI: http://dx.doi.org/10.3329/dujs.v60i1.10352  Dhaka Univ. J. Sci. 60(1): 137-140 2012 (January)


1988 ◽  
Vol 32 ◽  
pp. 311-321 ◽  
Author(s):  
R.A. Larsen ◽  
T.F. McNulty ◽  
R.P. Goehner ◽  
K.R. Crystal

AbstractThe use of conventional θ/2θ diffraction methods for the characterization of polycrystalline thin films is not in general a satisfactory technique due to the relatively deep penetration of x-ray photons in most materials. Glancing incidence diffraction (GID) can compensate for the penetration problems inherent in the θ/2θ geometry. Parallel beam geometry has been developed in conjunction with GID to eliminate the focusing aberrations encountered when performing these types of measurements. During the past yearwe developed a parallel beam attachment which we have successfully configured to a number of systems.


Sign in / Sign up

Export Citation Format

Share Document