Near-Bandgap Photoluminescence Decay Time in GaN Epitaxial Layers Grown on Sapphire

1995 ◽  
Vol 395 ◽  
Author(s):  
A. Hangleiter ◽  
J. S. Im ◽  
T. Forner ◽  
V. Härle ◽  
F. Scholz

ABSTRACTUsing picosecond time-resolved photoluminescence we have studied the decay time of excess carriers in GaN epitaxial layers over a wide range of temperatures from 4 K up to 400 K. At low temperature, a thermal dissociation of donor-bound excitons is observed. At higher temperatures up to room temperature, the luminescence decay at moderate excitation is governed by trapping of photogenerated electrons in ionized shallow donor levels. Using measured luminescence intensities to determine the quantum efficiency, we obtain the radiative lifetime of free excitons from low temperature up to room temperature. We use these data to determine the radiative recombination coefficient and the interband momentum matrix element.

Author(s):  
Jin Seo Im ◽  
Volker Härle ◽  
Ferdinand Scholz ◽  
Andreas Hangleiter

We have studied GaInN/GaN quantum well structures grown by LP-MOVPE by picosecond time-resolved photoluminescence spectroscopy. For the quantum wells we find rather long PL decay times of up to 600 ps at low temperature. At temperatures higher than about 100 K, the decay time decreases rapidly, reaching about 75 ps at room temperature. From measurements of the integrated PL intensity, we conclude that this decrease of the decay time is due to nonradiative recombination processes. By combining our data for the lifetime and the intensity, we derive the radiative lifetime, which is constant at low temperature and increases at elevated temperatures. We explain this behavior on the basis of the interface roughness at low temperature and thermal dissociation of excitons at higher temperatures.


2021 ◽  
Vol 23 (10) ◽  
pp. 6182-6189
Author(s):  
Dariusz M. Niedzwiedzki

Photophysical properties of N719 and Z907, benchmark Ru-dyes used as sensitizers in dye-sensitized solar cells, were studied by static and time-resolved optical spectroscopy at room temperature and 160 K.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 854
Author(s):  
Ki Hyun Nam

Radiation damage and cryogenic sample environment are an experimental limitation observed in the traditional X-ray crystallography technique. However, the serial crystallography (SX) technique not only helps to determine structures at room temperature with minimal radiation damage, but it is also a useful tool for profound understanding of macromolecules. Moreover, it is a new tool for time-resolved studies. Over the past 10 years, various sample delivery techniques and data collection strategies have been developed in the SX field. It also has a wide range of applications in instruments ranging from the X-ray free electron laser (XFEL) facility to synchrotrons. The importance of the various approaches in terms of the experimental techniques and a brief review of the research carried out in the field of SX has been highlighted in this editorial.


2008 ◽  
Vol 590 ◽  
pp. 233-248 ◽  
Author(s):  
Shigefusa F. Chichibu ◽  
Akira Uedono ◽  
Takeyoshi Onuma ◽  
Steven P. DenBaars ◽  
Umesh K. Mishra ◽  
...  

Threading dislocations (TDs) in (Al,In,Ga)N semiconductors are known to affect the luminescence efficiency of near-band-edge (NBE) emissions in bulk films and quantum structures. However, the principal role of point defects such as vacancies on the luminescent properties has not been fully understood. In this article, impacts of point defects on the luminescence quantum efficiency of NBE emissions and on the intensity of deep emission bands will be described, based on the results of steady-state and time-resolved photoluminescence (TRPL) and positron annihilation measurements. The room temperature nonradiative lifetime (τNR) of the NBE excitonic photoluminescence (PL) peak in polar (0001) and (000-1) , nonpolar (11-20) and (10-10), and zincblende (001) GaN layers prepared by various growth techniques was shown to increase with the decrease in concentration or size of Ga vacancies (VGa) and with the decrease in gross concentration of point defects including complexes, leading to an increase in the NBE PL intensity. As the edge TD density decreased, the concentration or size of VGa tended to decrease and τNR tended to increase. However, there existed remarkable exceptions. The results indicate that the nonradiative recombination process is governed not by single point defects, but by certain defects introduced with the incorporation of VGa, such as VGa-defect complexes. Similar relations were found in AlxGa1-xN alloy films grown by metalorganic vapor phase epitaxy: i. e. τNR at room temperature increased with the decrease in the concentration of cation vacancies (VIII) and with the decrease in gross concentration of point defects. In addition to nonradiative processes, the VIII concentration was found to correlate with the intensity ratio of characteristic deep emission band to the NBE emission (Ideep/INBE). For example, Ideep/INBE at low temperature for the deep emission bands at 4.6, 3.8, and 3.1 eV of AlN epilayers grown by NH3-source molecular beam epitaxy had a linear correlation with the concentration or size of Al vacancies (VAl). Since the relative intensities of 3.1 eV and 3.8 eV bands increased remarkably with lowering the supply ratio of NH3 to Al (V/III ratio) and growth temperature (Tg), they were assigned to originate from VAl-O as well as VAl-shallow donor complexes. The VAl concentration could be decreased by adjusting the V/III ratio and Tg. In the case of AlxGa1-xN alloys, the concentration or size of VIII and Ideep/INBE at 300 K increased simultaneously with the increase in x up to approximately 0.7. Similar to the case for GaN and AlN, the deep emission band was assigned as being due to the emission involving VIII-O complexes.


2006 ◽  
Vol 958 ◽  
Author(s):  
Takashi Suemasu ◽  
Cheng Li ◽  
Tsuyoshi Sunohara ◽  
Yuta Ugajin ◽  
Ken'ichi Kobayashi ◽  
...  

ABSTRACTWe have epitaxially grown Si/β-FeSi2/Si (SFS) structures with β-FeSi2 particles or β-FeSi2 continuous films on Si substrates by molecular beam epitaxy (MBE), and observed 1.6 μm electroluminescence (EL) at room temperature (RT). The EL intensity increases with increasing the number of β-FeSi2 layers. The origin of the luminescence was discussed using time-resolved photoluminescence (PL) measurements. It was found that the luminescence originated from two sources, one with a short decay time (τ∼10 ns) and the other with a long decay time (τ∼100 ns). The short decay time was due to carrier recombination in β-FeSi2, whereas the long decay time was due probably to a defect-related D1 line in Si.


2009 ◽  
Vol 81 (9) ◽  
pp. 1667-1675 ◽  
Author(s):  
James A. Calladine ◽  
Khuong Q. Vuong ◽  
Xue Z. Sun ◽  
Michael W. George

Fast time-resolved infrared (TRIR) spectroscopy has been useful for studying the reactions of a wide range of organometallic alkane and noble gas complexes at ambient temperature following irradiation of metal carbonyl precursor complexes. The reactivity of organometallic alkane and xenon complexes decreases both across and down groups V, VI, and VII, and for a given metal/ligand combination the alkane and xenon complexes have similar reactivities. Systematic studies of reactivity have produced long-lived Re complexes which have allowed such complexes to be characterized using NMR spectroscopy. A new approach using liquid propane at low temperature as a solvent to monitor the interaction of such weakly coordinating ligands with transition-metal centers is outlined. TRIR studies monitoring the coordination and activation of methane and ethane in supercritical methane and liquid ethane solvents at room temperature are also reviewed.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guowei Xiao ◽  
Bo Zhou ◽  
Xiaoyu Fang ◽  
Dongpeng Yan

Long-persistent luminescence based on purely inorganic and/or organic compounds has recently attracted much attention in a wide variety of fields including illumination, biological imaging, and information safety. However, simultaneously tuning the static and dynamic afterglow performance still presents a challenge. In this work, we put forward a new route of organic-doped inorganic framework to achieve wide-range and multicolor ultralong room-temperature phosphorescence (RTP). Through a facile hydrothermal method, phosphor (tetrafluoroterephthalic acid (TFTPA)) into the CdCO3 (or Zn2(OH)2CO3) host matrix exhibits an excitation-dependent colorful RTP due to the formation of diverse molecular aggregations with multicentral luminescence. The RTP lifetime of the doped organic/inorganic hybrids is greatly enhanced (313 times) compared to the pristine TFTPA. The high RTP quantum yield (43.9%) and good stability guarantee their easy visualization in both ambient and extreme conditions (such as acidic/basic solutions and an oxygen environment). Further codoped inorganic ions (Mn2+ and Pb2+) afford the hybrid materials with a novel time-resolved tunable afterglow emission, and the excitation-dependent RTP color is highly adjustable from dark blue to red, covering nearly the whole visible spectrum and outperforming the current state-of-the-art RTP materials. Therefore, this work not only describes a combined codoping and multicentral strategy to obtain statically and dynamically tunable long-persistent luminescence but also provides great opportunity for the use of organic-inorganic hybrid materials in multilevel anticounterfeiting and multicolor display applications.


2011 ◽  
Vol 679-680 ◽  
pp. 173-176
Author(s):  
John W. Steeds

In the course of studying by low temperature photoluminescence spectroscopy a wide range of electron-irradiated samples of p(Al)-type epitaxial layers of 4H SiC, from a variety of different sources of supply, the results were found to fit into two very different categories. The origin of these differences has been explored using a wide range of experimental techniques and found to result from the degree of compensation of the aluminium by nitrogen in the layers. Nitrogen concentrations deduced by SIMS experiments on these materials were found to be unreliable. The two different categories of material, called V and AB here, showed marked differences in their subsequent annealing behaviour and the implications of this distinction are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zongliang Xie ◽  
Xiayu Zhang ◽  
Hailan Wang ◽  
Cheng Huang ◽  
Haodong Sun ◽  
...  

AbstractThe rational lifetime-tuning strategy of ultralong organic phosphorescence is extraordinarily important but seldom reported. Herein, a series of multi-host/guest ultralong organic phosphorescence materials with dynamic lifetime-tuning properties were reported. By doping a non-room-temperature phosphorescence emitter into various solid host matrices with continuously reduced triplet energy levels, a wide-range lifetime (from 3.9 ms gradually to 376.9 ms) phosphorescence with unchangeable afterglow colors were realized. Further studies revealed that the host matrices were employed to afford rigid environment and proper energy levels to generate and stabilize the long-live triplet excitons. Meanwhile, these multi-host/guest ultralong organic phosphorescence materials also exhibited excitation-dependent phosphorescence and temperature-controlled afterglow on/off switching properties, according to the virtue of various photophysical and thermal properties of the host matrices. This work provides a guiding strategy to realize lifetime-tuning ultralong organic phosphorescence with lifetime-order encoding characteristic towards widespread applications in time-resolved information displaying, higher-level security protection, and dynamic multi-dimensional anti-counterfeiting.


1995 ◽  
Vol 395 ◽  
Author(s):  
J.P. Bergman ◽  
C. Harris ◽  
B. Monemar ◽  
H. Amano ◽  
I. Akasaki

ABSTRACTWe have performed time resolved photoluminescence measurements of the exciton recombination in different GaN samples at low temperatures. In epitaxial layers the decay time of the free exciton is typically faster than 100 ps. This is due to a dominating non-radiative recombination process. In thick bulk samples we have resolved and measured the decay time of the free exciton with a value of about 200 ps. We believe that this value is close to the radiative lifetime for free excitons in GaN. We have also shown that excitation transfer occurs between free and bound exciton states. We have furthermore measured the decay of the donor and acceptor bound excitons, and obtained values of the decay time of 250 ps and 1200 ps, respectively.


Sign in / Sign up

Export Citation Format

Share Document