Study of the Crystalline to Amorphous Silicon Boundary Following Laser Induced Solid Phase Epitaxy.

1981 ◽  
Vol 4 ◽  
Author(s):  
J. P. Gonchond ◽  
G. A. Rozgonyi ◽  
D. Bois

ABSTRACTEBIC and voltage contrast SEM microscopy, combined with optical microscopy. chemical etching and Talystep profiling have been used to investigate cw laser annealing of a-Si in the slip-free SPE regime. Special attention is devoted to the edges and extremities of the line scans, i.e. to the c-to a-Si boundary. At very low power, evidence is given for an initial reordering and thus electrical activation stage of the a-Si. For the higher power range regrowth occurs through two different processes. The EBIC yield is interpreted in terms of a balance between annealing of the ion implantation damage and defect generation in the si substrate during the laser annealing. These results are extended to the case of a scanned electron beam annealing.

1996 ◽  
Vol 53 (8) ◽  
pp. 4757-4769 ◽  
Author(s):  
G. Vitali ◽  
L. Palumbo ◽  
M. Rossi ◽  
G. Zollo ◽  
C. Pizzuto ◽  
...  

1993 ◽  
Vol 63 (10) ◽  
pp. 1405-1407 ◽  
Author(s):  
W. S. Liu ◽  
J. S. Chen ◽  
D. Y. C. Lie ◽  
M.‐A. Nicolet

1982 ◽  
Vol 13 ◽  
Author(s):  
J. Narayan ◽  
O. W. Holland ◽  
G. L. Olson

ABSTRACTThe nature of residual damage in As+, Sb+, and In+ implanted silicon after CW laser and e− beam annealing has been studied using plan-view and cross-section electron microscopy. Lattice location of implanted atoms and their concentrations were determined by Rutherford backscattering and channeling techniques. Maximum substitutional concentrations achieved by furnace annealing in a temperature range of 500–600°C have been previously reported [1] and greatly exceeded the retrograde solubility limits for all dopants studied. Higher temperatures and SPE growth rates characteristic of electron or cw laser annealing did not lead to greater incorporation of dopant within the lattice and often resulted in dopant precipitation. Dopant segregation at the surface was sometimes observed at higher temperatures.


2019 ◽  
Vol 806 ◽  
pp. 30-35
Author(s):  
Nikolay Gennadievich Galkin ◽  
Konstantin N. Galkin ◽  
Sergei Andreevich Dotsenko ◽  
Dmitrii L'vovich Goroshko ◽  
Evgeniy Anatolievich Chusovitin ◽  
...  

The morphology and structure of iron silicide nanorods formed on Si (111) vicinal surface by the SPE method at T = 630 °C were studied. Optimal Fe coverage and Fe deposition rate for the formation of a dense array of the nanorods (54-65% of the substrate area) on Si (111) surface with 3-4o miscut angles were established. The aspect ratio of the nanorods is 1.9 – 3.3. Cross-sectional images of a high-resolution transmission electron microscopy (HRTEM) have shown that the nanorods have α-FeSi2 crystal structure. They are strained along the “a” axis and stretched along the “c” axis, which increased the unit cell volume by 10.3%. According to HRTEM image analysis, the nanorods have the following epitaxial relationships: α-FeSi2[01]//Si [10] and α-FeSi2(112)//Si (111). All the data obtained have provided, for the first time, a direct evidence of α-FeSi2 nanorods formation on Si (111) vicinal surface without noticeable penetration of Fe atoms into the Si substrate.


1988 ◽  
Vol 128 ◽  
Author(s):  
J. Said ◽  
H. Jaouen ◽  
G. Ghibaudo ◽  
I. Stoemenos ◽  
P. Zaumseil

ABSTRACTThe combination of electrical, Transmission Electron Microscopy and Triple Crystal X-ray Diffraction measurements allow us to separate the existence of a local impurity activation process from the amorphous- crystal transformation. The local process occurs in the highly damaged surface layer induced by the arsenic implantation and is efficient well below the Solid Phase Epitaxy transition temperature. It is suggested that point defect migration should play an important role in the electrical impurity activation at low annealing temperatures.


1983 ◽  
Vol 25 ◽  
Author(s):  
Chuen-Der Lien ◽  
Meir Bartur ◽  
Marc-A. Nicolet

ABSTRACTEvaporated W, implanted Xe, and implanted 18O were used as markers to study the dominant moving species during (a) solid phase epitaxy (SPE) of evaporated Si, (b) silicide formation, and (c) oxidation of silicides on Si substrate.MeV 4He+ backscattering spectrometry and 18O (p, α)15 N nuclear reaction were used to monitor the evolution of elemental profiles as well as the change in the marker position. In most cases, the dominant moving species in SPE is the same as that observed in the formation and oxidation of that silicide. However, in CrSi2 the dominant moving species is Si during silicide formation, but Cr during SPE or oxidation.


1984 ◽  
Vol 35 ◽  
Author(s):  
G.L. Olson ◽  
J.A. Roth ◽  
Y. Rytz-Froidevaux ◽  
J. Narayan

ABSTRACTThe temperature dependent competition between solid phase epitaxy and random crystallization in ion-implanted (As+, B+, F+, and BF2+) silicon films is investigated. Measurements of time-resolved reflectivity during cw laser heating show that in the As+, F+, and BF2+-implanted layers (conc 4×1020cm-3) epitaxial growth is disrupted at temperatures 1000°C. This effect is not observed in intrinsic films or in the B+-implanted layers. Correlation with results of microstructural analyses and computer simulation of the reflectivity experiment indicates that disruption of epitaxy is caused by enhancement of the random crystallization rate by arsenic and fluorine. Kinetics parameters for the enhanced crystallization process are determined; results are interpreted in terms of impurity-catalyzed nucleation during the random crystallization process.


Sign in / Sign up

Export Citation Format

Share Document