An Influence of the Si(111)3-4o Vicinal Surface on the Solid Phase Epitaxy of α-FeSi2 Nanorods and their Crystal Parameters

2019 ◽  
Vol 806 ◽  
pp. 30-35
Author(s):  
Nikolay Gennadievich Galkin ◽  
Konstantin N. Galkin ◽  
Sergei Andreevich Dotsenko ◽  
Dmitrii L'vovich Goroshko ◽  
Evgeniy Anatolievich Chusovitin ◽  
...  

The morphology and structure of iron silicide nanorods formed on Si (111) vicinal surface by the SPE method at T = 630 °C were studied. Optimal Fe coverage and Fe deposition rate for the formation of a dense array of the nanorods (54-65% of the substrate area) on Si (111) surface with 3-4o miscut angles were established. The aspect ratio of the nanorods is 1.9 – 3.3. Cross-sectional images of a high-resolution transmission electron microscopy (HRTEM) have shown that the nanorods have α-FeSi2 crystal structure. They are strained along the “a” axis and stretched along the “c” axis, which increased the unit cell volume by 10.3%. According to HRTEM image analysis, the nanorods have the following epitaxial relationships: α-FeSi2[01]//Si [10] and α-FeSi2(112)//Si (111). All the data obtained have provided, for the first time, a direct evidence of α-FeSi2 nanorods formation on Si (111) vicinal surface without noticeable penetration of Fe atoms into the Si substrate.

1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


1992 ◽  
Vol 275 ◽  
Author(s):  
J. Chen ◽  
H. A. Lu ◽  
F. DiMeo ◽  
B. W. Wessels ◽  
D. L. Schulz ◽  
...  

ABSTRACT-Heteroepitaxial superconducting Bi,Sr2CaCu2Ox (BSCCO 2212) thin films have been formed by solid phase epitaxy from amorphous films deposited on (100) LaA1O3 single crystal substrates by organometallic chemical vapor deposition. The epitaxial structure of the film is confirmed by x-ray diffraction including θ/2θ and Φ (in plane rotation) scans. Cross-sectional high resolution transmission electron microscopy indicates that the film-substrate interface is nearly atomically abrupt. Improvements in superconducting properties of the epitaxial thin films are noted in comparison to highly textured films deposited on MgO.


1986 ◽  
Vol 77 ◽  
Author(s):  
B. D. Runt ◽  
N. Lewis ◽  
L. J. Schotalter ◽  
E. L. Hall ◽  
L. G. Turner

ABSTRACTEpitaxial CoSi2/Si multilayers have been grown on Si(111) substrates with up to four bilayers of suicide and Si. To our knowledge, these are the first reported epitaxial metal-semiconductor multilayer structures. The growth of these heterostructures is complicated by pinhole formation in the suicide layers and by nonuniform growth of Si over the suicide films, but these problems can be controlled through nse of proper growth techniques. CoSi2 pinhole formation has been significantly reduced by utilizing a novel solid phase epitaxy technique in which room-temperature-deposited Co/Si bilayers are annealed to 600–650δC to form the suicide layers. Islanding in the Si layers is minimized by depositing a thin (<100Å) Si layer at room temperature with subsequent high temperature growth of the remainder of the Si. Cross-sectional transmission electron microscopy studies demonstrate that these growth procedures dramatically improve the continuity and quality of the CoSi. and Si multilayers.


1985 ◽  
Vol 54 ◽  
Author(s):  
T. Sawada ◽  
W. X. Chen ◽  
E. D. Marshall ◽  
K. L. Kavanagh ◽  
T. F. Kuech ◽  
...  

ABSTRACTAlloyed ohmic contacts (i.e. Au-Ge-Ni) to n-GaAs lead to non-planar interfaces which are unsuitable for devices with shallow junctions and small dimensions. In this study, the fabrication of non-alloyed ohmic contacts (via solid state reactions) is investigated. A layered structure involving the solid phase epitaxy of Ge using a transport medium (PdGe) is shown to produce low (1 — 5 × 10∼6Ω cm2) and reproducible values of contact resistivity. The resultant interface is shown to be abrupt by cross-sectional transmission electron microscopy.


2001 ◽  
Vol 16 (11) ◽  
pp. 3229-3237 ◽  
Author(s):  
A. C. Y. Liu ◽  
J. C. McCallum ◽  
J. Wong-Leung

Solid-phase epitaxy was examined in deep amorphous volumes formed in silicon wafers by multi-energy self-implantation through a mask. Crystallization was effected at elevated temperatures with the amorphous volume being transformed at both lateral and vertical interfaces. Sample topology was mapped using an atomic force microscope. Details of the process were clarified with both plan-view and cross-sectional transmission electron microscopy analyses. Crystallization of the amorphous volumes resulted in the incorporation of a surprisingly large number of dislocations. These arose from a variety of sources. Some of the secondary structures were identified to occur uniquely from the crystallization of volumes in this particular geometry.


1990 ◽  
Vol 202 ◽  
Author(s):  
W.K. Choo ◽  
K.I. Cho ◽  
J.Y. Lee ◽  
S.C. Park ◽  
O.J. Kwon

ABSTRACTGaAs layers grown by solid phase epitaxy on (001) Si substrate were subjected to post-growth rapid thermal anneal (RTA) at 700, 800, and 900°C for 10s in a N2 atmosphere. Rutherford backscattering/channeling showed a substantial improvement in crystalline quality of GaAs epilayer after RTA at 800°C. After RTA at 900°C for 10s, stacking faults (and/or microtwins) were eliminated entirely, and the dislocation densities in both the interface region and the film interior were reduced. High-resolution transmission electron micrographs showed a significant change in misfit dislocation structure at the interface after RTA; namely, the 90° pure edge and 60° misfit dislocations were transformed to an evenly distributed array of 90° dislocations at the interface.


1991 ◽  
Vol 235 ◽  
Author(s):  
C. Lee ◽  
K. S. Jones

ABSTRACTThe solid phase epitaxial regrowth (SPER) process of implantation amorphized Si0.7Ge0.3 layers (850± Å thick) grown on (100) Si has been studied by cross-sectional transmission electron microscopy. For amorphous layers produced by 40 Ar+ implantation highly defective three dimensional regrowth was observed in both Si0.7Ge0.3 and Si. Stacking faults were the principle defect formed of both materials during regrowth. SPER after amorphization via 73 Ge+ implantation was also investigated. It was found that the SPER velocity of the 73 Ge+ implanted Si0.7 Ge0.7 Ge0.3 was about twice the velocity of the 40 Ar+ implanted samples; for 73 Ge+ implanted Si it was about three times that of the 40Ar+ implanted samples. The activation energy for SPER in 40Ar+ and in 73 Ge+ implanted Si0.7 Geo0.3 was about 1.6 and 2.6 eV, respectively. The defect density was significantly reduced in 73 Ge+ amorphized Si but not in the 73 Ge+ amorphized Si0.7 Ge0.3. It is proposed that limited Ar solubility inhibits high quality regrowth in both SiGe and Si. Upon 73 Ge+ amorphization and solid phase epitaxy the interfacial strain between the SiGe and Si cannot be accommodated. Thus the epitaxial process is poor in these SiGe strained layers regardless of the amorphizing species.


1994 ◽  
Vol 12 (6) ◽  
pp. 3018-3022 ◽  
Author(s):  
André Rocher ◽  
André Oustry ◽  
Marie Josée David ◽  
Michel Caumont

1985 ◽  
Vol 56 ◽  
Author(s):  
B.D. HUNT ◽  
N. LEWIS ◽  
E.L. HALL ◽  
L.G. JTURNER ◽  
L.J. SCHOWALTER ◽  
...  

AbstractThin (<200Å), epitaxial CoSi2 films have been grown on (111) Siwafers in a UHV system using a variety of growth techniques including solid phase epitaxy (SPE), reactive deposition epitaxy (RDE), and molecular beam epitaxy (MBE). SEN and TEN studies reveal significant variations in the epitaxial silicide surface morphology as a function of the sillciqd formation method. Pinhole densities are generally greater than 107 cm-2, although some reduction can be achieved by utilizing proper growth techniques. Si epilayers were deposited over the CoSi2 films inthe temperature range from 550ºC to 800ºC, and the reesuulttinng structures have been characterized using SEM, cross—sectional TEN, and ion channeling measurements. These measurements show that the Si epitaxial quality increases with growth temperature, although the average Si surface roughness and the CoSi2 pinhole density also increase as the growth temperature is raised.


1995 ◽  
Vol 379 ◽  
Author(s):  
N.D. Theodore ◽  
W.S. Liu ◽  
D.Y.C. Lie ◽  
T.K. Cams ◽  
K.L. Wang

ABSTRACTTransmission electron microscopy, conventional and high-resolution, is used to characterize the microstructural behavior of oxidized Ge0.78Si0.12 layers annealed in a reducing 95% N2+ 5% H2 ambient. An epitaxial Ge layer grows by solid-phase epitaxy on an underlying Ge0.78Si0.12 seeding layer with a Ge-Sio2 matrix positioned between them. Defect densities in the epitaxial Ge are significantly lower than in the underlying Ge0.78Si0.12. Microstructural details of this behavior are investigated.


Sign in / Sign up

Export Citation Format

Share Document