Dependence of Cu/Sn and Cu/60Sn40Pb Solder Joint Strength on Diffusion Controlled Growth of Cu3Sn and Cu6Sn5

1984 ◽  
Vol 40 ◽  
Author(s):  
D. S. Dunn ◽  
T. F. Marinis ◽  
W. M. Sherry ◽  
C. J. Williams

AbstractThe growth of intermetallic compounds and the strength of Cu/ Sn and Cu/ 60Sn40Pb butt joints were studied as a function of isothermal aging. The effects of single-crystal (100), (110), and (111) oriented copper on the growth rates of Cu3Sn and Cu6Sn5 intermetallic compounds are characterized and the influence of elevated temperature aging on the tensile strength of butt joints analyzed. Substrate orientation appears to influence the growth rate. Metallographic measurements showed that the intermetallic compounds grew at a rate proportional to the square root of time. Tensile tests of aged butt joints revealed a more complex time dependence.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Ousama M. Abdelhadi ◽  
Leila Ladani

The effect of joint size on the interfacial reaction in the Sn3.5Ag/Cu-substrate soldering system was examined. An experiment was conducted in which parameters such as bonding time, temperature, and pressure were varied at multiple levels. The morphology and thickness of all intermetallic compounds (IMC) were analyzed using the scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. An examination of the microstructures of solder joints of different sizes revealed that the size of the solder joint has no effect on the type of IMCs formed during the process. It was found that the joint size significantly affected the thickness of the intermetallic layers. The Cu3Sn intermetallic layers formed in the smaller sized solder joints were found to be thicker than those in the larger sized solder joints. In all specimen sizes, the increase in the thickness of Cu3Sn intermetallic layers with soldering time was found to obey a parabolic relationship. Additionally, for the cases when eutectic solder is available in the joints, a similar soldering time and temperature dependency were found for the Cu6Sn5 IMC phase. The intermetallic growth of the Cu3Sn phase was under a volume-diffusion controlled mechanism. The growth rate constants and activation energies of intermetallic layers were also reported for different joint thicknesses. Furthermore, the growth rate constants of the Cu3Sn intermetallic layer were found to depend upon the size of the joints.


2007 ◽  
Vol 124-126 ◽  
pp. 5-8
Author(s):  
Ja Myeong Koo ◽  
Dea Gon Kim ◽  
Seung Boo Jung

The interfacial reactions and shear properties of Sn-37Pb (wt.%) solder bumps with two different under bump metallizations (UBMs), Cu and Ni, were investigated after high temperature storage (HTS) tests at 150 C for up to 65 days. Two different intermetallic compounds (IMCs), Cu6Sn5 and Cu3Sn, were formed at the bump/Cu interface, whereas only a Ni3Sn4 IMC layer was formed at the bump/Ni interface. The thicknesses of these IMCs increased linearly with the square root of duration time. The IMC growth rate at the bump/Cu UBM interface was much greater than that at the bump/Ni UBM interface. The shear properties of the bumps with the Cu UBM were greatly decreased with increasing duration time, compared with those with the Ni UBM.


2007 ◽  
Vol 539-543 ◽  
pp. 1495-1500 ◽  
Author(s):  
H. Bei ◽  
E.P. George

This paper reviews two kinds of well-aligned fibrous microstructures produced by directional solidification of NiAl-Mo and Fe-Fe2Ta eutectics. In both these composites, fiber size and spacing decrese inversely as the square root of the growth rate. Tensile tests as a function of temperature showed that the NiAl-Mo composite has a higher yield strength and lower ductile-to-brittle transition temperature than the NiAl matrix. For the Fe-Fe2Ta composite, yield strengths in excess of 700 MPa were obtained at temperatures to 600°C, with elongations to fracture of ~3% which remained roughly constant at temperatures to 950°C.


2008 ◽  
Vol 23 (12) ◽  
pp. 3303-3308 ◽  
Author(s):  
Chien-Neng Liao ◽  
Ching-Hua Lee

Reactions of molten Sn–xCu (x = 0.05 to 1.0) alloys with Te substrate at 250 °C were investigated. A dosage of 0.1 wt% Cu in Sn is found to be effective in suppressing the vigorous Sn/Te reaction by forming a thin CuTe at the solder/Te interface. The CuTe morphology changes from irregular clusters into a layered structure with increasing Cu content in Sn. With the same reaction time, the CuTe thickness increases proportionally to the square root of Cu content in Sn–Cu alloys, suggesting a diffusion-controlled growth for CuTe.


2018 ◽  
Vol 53 (23) ◽  
pp. 3335-3346 ◽  
Author(s):  
Hamid Reza Borghei ◽  
Bashir Behjat ◽  
Mojtaba Yazdani

In this paper, the effect of graphene nanoparticle additive on the strength of simple and hybrid (rivet-bonded) single-lap joints is studied using the experimental method. Two different types of graphene with different number of layer and thicknesses are used in adhesive-graphene nanoparticle composite construction. At first, tensile tests are done on bulk specimens of adhesive with different additives. It is found that adding 0.5 wt% of graphene to the neat adhesive leads to an increase in the ultimate tensile strength of bulk specimens almost 24% and 12% for two graphene types compared to the neat adhesive. Also, the shear strength of adhesive and hybrid lap joints incorporating two types of graphene nanoparticles (types I and II) is compared to that of adhesive and hybrid joints without graphene nanoparticles. SEM results of fracture surfaces show that the inclusion of graphene nanoparticle to the adhesive increases the roughness of surfaces. Experimental results reveal that graphene nanoparticle increases the strength of bonded and hybrid joints. It is observed that, graphene with a lower thickness and number of layers has a better influence on joint strength. In fact, graphene nanoparticle type II makes a homogeneous distribution in adhesive-graphene nanoparticle composite and causes a significant increase on joint strength.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 831 ◽  
Author(s):  
Di Zhao ◽  
Keke Zhang ◽  
Ning Ma ◽  
Shijie Li ◽  
Chenxiang Yin ◽  
...  

Dynamic observation of the microstructure evolution of Sn2.5Ag0.7Cu0.1RE/Cu solder joints and the relationship between the interfacial intermetallic compound (IMC) and the mechanical properties of the solder joints were investigated during isothermal aging. The results showed that the original single scallop-type Cu6Sn5 IMC gradually evolved into a planar double-layer IMC consisting of Cu6Sn5 and Cu3Sn IMCs with isothermal aging. In particular, the Cu3Sn IMC grew towards the Cu substrate and the solder seam sides; growth toward the Cu substrate side was dominant during the isothermal aging process. The growth of Cu3Sn IMC depended on the accumulated time at a certain temperature, where the growth rate of Cu3Sn was higher than that of Cu6Sn5. Additionally, the growth of the interfacial IMC was mainly controlled by bulk diffusion mechanism, where the activation energies of Cu6Sn5 and Cu3Sn were 74.7 and 86.6 kJ/mol, respectively. The growth rate of Cu3Sn was slightly faster than that of Cu6Sn5 during isothermal aging. With increasing isothermal aging time, the shear strength of the solder joints decreased and showed a linear relationship with the thickness of Cu3Sn. The fracture mechanism of the solder joints changed from ductile fracture to brittle fracture, and the fracture pathway transferred from the solder seam to the interfacial IMC layer.


Sign in / Sign up

Export Citation Format

Share Document