Defects in YBa2Cu3O7−δ Thin Films and Their Influences on Tc

1995 ◽  
Vol 401 ◽  
Author(s):  
Jinhua Ye ◽  
Keikichi Nakamura

AbstractCrystallographic defects introduced in the YBa2Cu3O7−δ thin films during depositions were studied using X-ray diffraction method, and their influences on superconducting properties were also investigated by examining Tc variation of the as-grown and post-annealed thin films. It was found that there exist several kinds of defects in the as-grown thin films, such as oxygen deficiency, cation disordering, and others like lattice dislocation, stacking faults, etc.. These defects could be relaxed by heat treatment at temperatures ranging from 400 to 900 °C, resulting in Tc enhancement more or less. Quantitative understandings of the relations among annealing temperature, structural relaxation, and Tc improvement has also been reached. The kinetics of the relaxation of the defects in the YBCO films was studied further using a high-temperature X-ray diffractometer. Interesting phenomena have been observed at around 400 °C due to abnormal desorption behavior of oxygen and at higher temperatures relating to cation ordering.

Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 118 ◽  
Author(s):  
Ho-Yun Lee ◽  
Chi-Wei He ◽  
Ying-Chieh Lee ◽  
Da-Chuan Wu

Cu–Mn–Dy resistive thin films were prepared on glass and Al2O3 substrates, which wasachieved by co-sputtering the Cu–Mn alloy and dysprosium targets. The effects of the addition ofdysprosium on the electrical properties and microstructures of annealed Cu–Mn alloy films wereinvestigated. The composition, microstructural and phase evolution of Cu–Mn–Dy films werecharacterized using field emission scanning electron microscopy, transmission electronmicroscopy and X-ray diffraction. All Cu–Mn–Dy films showed an amorphous structure when theannealing temperature was set at 300 °C. After the annealing temperature was increased to 350 °C,the MnO and Cu phases had a significant presence in the Cu–Mn films. However, no MnO phaseswere observed in Cu–Mn–Dy films at 350 °C. Even Cu–Mn–Dy films annealed at 450 °C showedno MnO phases. This is because Dy addition can suppress MnO formation. Cu–Mn alloy filmswith 40% dysprosium addition that were annealed at 300 °C exhibited a higher resistivity of ∼2100 μΩ·cm with a temperature coefficient of resistance of –85 ppm/°C.


Author(s):  
M. Schieber ◽  
Y. Ariel ◽  
A. Raizman ◽  
S. Rotter

AbstractA quantitative evaluation of the influence of the amount of the crystallographically unoriented grains of YBa


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gyu-bong Cho ◽  
Tae-hoon Kwon ◽  
Tae-hyun Nam ◽  
Sun-chul Huh ◽  
Byeong-keun Choi ◽  
...  

LiNiO2thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2thin film. The ZrO2-coated LiNiO2thin film provided an improved discharge capacity compared to bare LiNiO2thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2coating layer.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


1998 ◽  
Vol 13 (1) ◽  
pp. 197-204 ◽  
Author(s):  
B. A. Baumert ◽  
L-H. Chang ◽  
A. T. Matsuda ◽  
C. J. Tracy ◽  
N. G. Cave ◽  
...  

Physical and electrical characterization techniques have been applied to the problem of developing a lower temperature process for spin-on Ba0.7Sr0.3TiO3 thin films and capacitors compatible with on-chip aluminum metallization. The films were prepared by spin-coating from carboxylate precursors and were processed at temperatures between 650 °C and 450 °C. Capacitors annealed at higher temperatures have a dielectric constant (κ) of 382, a C/A of 20 fF/μm2, and a leakage current density of 2 × 10−7 A/cm2 at 3.3 V. Those processed at 450 °C show occasionally promising but inconsistent results, correlated using TEM images with locally variable crystallization into the perovskite phase. The kinetics of the spin-on solution chemical decomposition and crystallization has been investigated through the use of x-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy.


2011 ◽  
Vol 383-390 ◽  
pp. 822-825
Author(s):  
Ping Luan ◽  
Jian Sheng Xie ◽  
Jin Hua Li

Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films were detected by X-ray diffraction(XRD), the main crystal phase peak is at 2θ=42.458°; The resistivity of films were measured by SDY-4 four-probe meter; The conductive type of the films were tested by DLY-2 conductivity type testing instrument. The results show that the annealing temperature and time effect on the crystal resistivity and crystal structure greatly.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


1994 ◽  
Vol 9 (8) ◽  
pp. 2133-2137 ◽  
Author(s):  
Hideki Yoshioka

Thin films in the system (1 - x) PbTiO3−xLa2/3TiO3 were prepared by the sol-gel and dip-coating methods. Phases deposited in the films and the lattice parameters as a function of the composition were investigated by the x-ray diffraction method. The solid solutions with a perovskite structure were formed as a single phase with x up to 0.9. For the composition of x = 1.0, metastable La-Ti-O perovskite phase with a small amount of the impurity phase, La2Ti2O7, was obtained. Simulation of x-ray diffraction patterns based on the defect structure model shows that the structure of the La-Ti-O perovskite phase includes randomly distributed cation vacancies at the A-site, namely (La2/3□1/3)TiO3.


Sign in / Sign up

Export Citation Format

Share Document