Effects of Birefringence in Ordered GaInP/AlGaInP Lasers

1995 ◽  
Vol 417 ◽  
Author(s):  
A. Moritz ◽  
R. Wirth ◽  
C. Geng ◽  
F. Scholz ◽  
A. Hangleiter

AbstractTernary semiconductors like GaInP under certain growth conditions exhibit a (partial) chemical ordering in form of a superlattice of alternate Ga-rich and In-rich planes in (111) direction. We have performed measurements of the polarization properties of light propagating in ordered GaInP/AlGaInP quantum well waveguide structures with various amounts of strain and observed a mode conversion between transverse electric (TE) and transverse magnetic (TM) modes for light propagating along (110). Lasers built of ordered material with the cavity in this direction show a distorted polarization of the laser light which depends on ordering and strain. We show that these effects are caused by an optical birefringence due to the reduced symmetry of the ordered material which leads to a coupling of the TE and TM modes. Only a new linear combination of TE and TM modes, the “super-modes”, can propagate in the waveguide without change. Within this simple model the polarization behavior of the light in the waveguide and in lasers can be explained very well.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 474
Author(s):  
Hedi Sakli

This paper presents an extension of the formulation of wave propagation in transverse electric (TE) and transverse magnetic (TM) modes for the case of metallic cylindrical waveguides filled with longitudinally magnetized ferrite. The higher order modes were exploited. We externally controlled the cut-off frequency through the application of DC magnetic fields. The numerical results of dispersion diagrams for TE and TM modes were obtained and analyzed. We analyzed a waveguide antenna filled with partially magnetized ferrite using the mode matching (MM) technique based on the TE and TM modes. By using modal analysis, our approach considerably reduced the computation time compared to HFSS. Ferrites are important for various industrial applications, such as circulators, isolators, antennas and filters.


2021 ◽  
Vol 9 ◽  
Author(s):  
James Byers ◽  
Kapil Debnath ◽  
Hideo Arimoto ◽  
Muhammad K. Husain ◽  
Moïse Sotto ◽  
...  

In this paper we demonstrate that by breaking the left/right symmetry in a bi-planar double-silicon on insulator (SOI) photonic crystal (PhC) fin-waveguide, we can couple the conventionally used transverse-electric (TE) polarized mode to the transverse-magnetic (TM) polarization slot-mode. Finite difference time domain (FDTD) simulations indicate that the TE mode couples to the robust TM mode inside the Brillouin zone. Broadband transmission data shows propagation identified with horizontal-slot TM mode within the TE bandgap for fully mismatched fabricated devices. This simultaneously demonstrates TE to TM mode conversion, and the narrowest Si photonics SiO2 slot-mode propagation reported in the literature (10 nm wide slot), which both have many potential telecommunication applications.


2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Lidan Zhou ◽  
Mingcheng Panmai ◽  
Jin Xiang ◽  
Sheng Lan

Abstract We investigate numerically and experimentally the optical properties of the transverse electric (TE) waves supported by a dielectric-metal heterostructure. They are considered as the counterparts of the surface plasmon polaritons (i.e., the transverse magnetic (TM) waves) which have been extensively studied in the last several decades. We show that TE waves with resonant wavelengths in the visible light spectrum can be excited in a dielectric-metal heterostructure when the optical thickness of the dielectric layer exceeds a critical value. We reveal that the electric and magnetic field distributions for the TE waves are spatially separated, leading to higher quality factors or narrow linewidths as compared with the TM waves. We calculate the thickness, refractive index and incidence angle dispersion relations for the TE waves supported by a dielectric-metal heterostructure. In experiments, we observe optical resonances with linewidths as narrow as ∼10 nm in the reflection or scattering spectra of the TE waves excited in a Si3N4/Ag heterostructure. Finally, we demonstrate the applications of the lowest-order TE wave excited in a Si3N4/Ag heterostructure in optical display with good chromaticity and optical sensing with high sensitivity.


Author(s):  
Jiaman Hong ◽  
Bo Wang ◽  
Xiaoqing Zhu ◽  
Zhichao Xiong ◽  
Yusen Huang ◽  
...  

In this paper, a novel embedded reflective grating (ERG) is presented to realize bi-function polarization operating at infrared band by finite element analysis (FEM). For transverse electric (TE) polarization, a two-port output (0th and −2nd orders) with an efficiency of more than 47% and excellent uniformity can be obtained. For transverse magnetic (TM) polarization, a high efficiency output of 94.72% can be achieved at the −2th order. The results of the analysis of the electric field intensity distribution, angular and wavelength bandwidths further demonstrate the advantages of the proposed grating. In addition, the tolerance analysis of period and duty cycle prove the feasibility of the grating in practical production.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1954 ◽  
Author(s):  
Can Cao ◽  
Yongzhi Cheng

In this paper, a plasmonic perfect absorber (PPA) based on a silicon nanorod resonator (SNRR) for visible light is proposed and investigated numerically. The proposed PPA is only a two-layer nanostructure consisting of a SNRR periodic array and metal substrate. The perfect absorption mainly originates from excitation of the localized surface plasmon resonance (LSPR) mode in the SNRR structure. The absorption properties of this design can be adjusted by varying the radius (r) and height (h) of the SNRR structure. What is more, the stronger quad-band absorption can be achieved by combing four different radius of the SNRR in one period as a super unit-cell. Numerical simulation indicates that the designed quad-band PPA can achieve the absorbance of 99.99%, 99.8%, 99.8%, and 92.2% at 433.5 THz, 456 THz, 482 THz, and 504.5 THz, respectively. Further simulations show that the proposed PPA is polarization-insensitive for both transverse electric (TE) and transverse magnetic (TM) modes. The proposed PPA can be a desirable candidate for some potential applications in detecting, sensing, and visible spectroscopy.


2019 ◽  
Vol 9 (3) ◽  
pp. 609 ◽  
Author(s):  
Yuya Shoji ◽  
Tetsuya Mizumoto

Silicon waveguide optical isolators were fabricated by direct bonding of magneto-optical (MO) garnet. The technique allowed efficient MO phase shift owing to the use of single-crystalline garnet and negligibly thin interlayer on the silicon core layer. A Mach–Zehnder interferometer (MZI) provided optical isolation utilizing the MO phase shift. High isolation, wide bandwidth, and temperature-insensitive operations had been demonstrated by tailoring the MZI design. Also, transverse electric (TE)–transverse magnetic (TM) mode converters were integrated to control operating polarization. In this paper, we reviewed these progresses on silicon waveguide optical isolators.


Sign in / Sign up

Export Citation Format

Share Document