Analysis of the Sublimation Growth Process of Silicon Carbide Bulk Crystals

1996 ◽  
Vol 423 ◽  
Author(s):  
R. Eckstein ◽  
D. Hofmann ◽  
Y. Makarov ◽  
St. G. Müller ◽  
G. Pensl ◽  
...  

AbstractExperimental and numerical analysis have been performed on the sublimation growth process of SiC bulk crystals. Crystallographic, electrical and optical properties of the grown silicon carbide (SIC) crystals have been evaluated by various characterization techniques. Numerical models for the global simulation of SiC bulk growth including heat and mass transfer and chemical processes are applied and experimentally verified.

1999 ◽  
Vol 572 ◽  
Author(s):  
Erwin Schmitt ◽  
Robert Eckstein ◽  
Martin Kölbl ◽  
Amd-Dietrich Weber

ABSTRACTFor the growth of 2″ 6H-SiC a sublimation growth process was developed. By different means of characterization crystal quality was evaluated. Higher defect densities, mainly in the periphery of the crystals were found to be correlated to unfavourable process conditions. Improvement of thermal boundary conditions lead to a decreased defect density and better homogeneity over the wafer area.


2000 ◽  
Vol 640 ◽  
Author(s):  
Michel Pons ◽  
Cecile Moulin ◽  
Jean-Marc Dedulle ◽  
Alexandre Pisch ◽  
Bernard Pelissier ◽  
...  

ABSTRACTAn accurate modelling and simulation of the sublimation growth process needs a software taking into account a multitude of highly coupled phenomena: fluid mechanics, convective, conductive and radiative heat transfer, electromagnetic, multicomponent species transport, homogeneous and heterogeneous reactivity and finally thermal and transport databases. The objective of this paper is to combine modelling trends with experimental results to propose explanations and solutions to growth problems. Finally, a simple and generic mechanical approach will show the relations between the density of dislocations and the temperature field.


2009 ◽  
Vol 615-617 ◽  
pp. 11-14 ◽  
Author(s):  
Philip Hens ◽  
Ulrike Künecke ◽  
Katja Konias ◽  
Rainer Hock ◽  
Peter J. Wellmann

Silicon carbide as a material for electronic devices still has substantial problems concerning its structural quality and defects. It has been shown that dopants can have a big influence on structural properties like polytype stability and dislocation statistics [1]. We will discuss the effect of an isoelectronic dopant in silicon carbide. Germanium, being a member of the 4th group in the periodic table of elements like silicon and carbon, will not influence the electrical properties of the material such as e.g. aluminum. In our experiments we reached concentrations of up to 1*1020 cm-3. We have observed an impact on the polytype stability during sublimation growth with in-situ germanium incorporation. We investigated an influence on the dislocation statistics during growth and, hence, varying germanium concentration. We found only a slight decrease in mobility during Hall measurements but no severe changes in electrical properties of the material.


1998 ◽  
Vol 510 ◽  
Author(s):  
Noboru Ohtani ◽  
Jun Takahashi ◽  
Masakazu Katsuno ◽  
Hirokatsu Yashiro ◽  
Masatoshi Kanaya

AbstractThe defect formation during sublimation bulk crystal growth of silicon carbide (SiC) is discussed. SiC bulk crystals are produced by seeded sublimation growth (modified-Lely method), where SiC source powder sublimes and is recrystallized on a slightly cooled seed crystal at uncommonly high temperatures (≥2000°C). The crystals contain structural defects such as micropipes (hollow core dislocations), subgrain boundaries, stacking faults and glide dislocations in the basal plane. The type and density of the defects largely depend on the crystal growth direction, and many aspects are different between the growth parallel and perpendicular to the <0001> c-axis. Micropipes are characteristic defects to the c-axis growth, while a large number of stacking faults are introduced during growth perpendicular to the c-axis. We discuss the cause and mechanism of the defect formation


2014 ◽  
Vol 778-780 ◽  
pp. 31-34 ◽  
Author(s):  
Kanaparin Ariyawong ◽  
Nikolaos Tsavdaris ◽  
Jean Marc Dedulle ◽  
Eirini Sarigiannidou ◽  
Thierry Ouisse ◽  
...  

Graphite crucible in seeded sublimation growth of Silicon Carbide (SiC) single crystal does not only act as a container but also as an additional carbon source. The modeling of the growth process integrated with the etching phenomenon caused by the interaction between vapor species and the graphite crucible is shown to be able to predict the shape of the crystal front during the growth. The additional fluxes produced at the graphite part are delivered to the growing crystal mainly at the crystal periphery. The results obtained from the modeling are in good agreement with the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document