Thin-Film Cadmium Sulfide/Cadmium Telluride Alloys

1996 ◽  
Vol 426 ◽  
Author(s):  
D. G. Jensen ◽  
B. E. McCandless ◽  
R. W. Birkmire

AbstractThin films of CdTel-xSx with bulk atomic compositions, x≡[S]/([S]+[Te]), ranging from 0 to 0.45 were deposited by vacuum co-evaporation of CdTe and CdS with substrate temperatures of 200 and 250°C. X-ray diffraction analysis revealed that films with x < 0.3 were predominately single phase having the zincblende structure. Films with 0.35 < x < 0.45 contained the wurtzite modification. Lattice parameter determination indicated that each phase exists with compositions well within the miscibility gap shown on published equilibrium phase diagrams. The variation of the optical band gap with x was determined by measuring transmission and reflection of the films. Heat treatment at 415°C in the presence of CdC12 caused the films to segregate into two phases consistent with the phase diagram. If the CdCl2 is assumed to only promote the phase segregation process, then the compositions of the two phases after heat treatment may be taken as measurements of the solubility limits of S in CdTe and Te in CdS respectively. The solubility limit of S in CdTe was thus determined to be 5.8% at 415°C which is the temperature used for the common CdC12 treatment of CdTe-based solar cells. An analysis of CdTe/CdS solar cell device structures shows that the atomic composition of alloys created by interdiffusion are consistent with these solubility limits.

1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


2005 ◽  
Vol 20 (4) ◽  
pp. 1017-1025 ◽  
Author(s):  
Ashutosh S. Gandhi ◽  
Carlos G. Levi

Al2O3–Y2O3 powders were synthesized in the range of 25–55% Y2O3 by reverse coprecipitation of nitrate solutions. All starting powders were amorphous and formed primary yttrium aluminum garnet (YAG) upon crystallization. X-ray diffraction detected only garnet in compositions of 30–40% Y2O3 after heat treatment at 1250 °C. Compositions of 45–55% Y2O3 established a metastable YAG + Y4Al2O9 microstructure. The YAG phase field was metastably extended away from its stoichiometry, as indicated by a systematic increase in lattice parameter with Y2O3 content. Although some Al2O3 enrichment was achieved, YAG appears to tolerate greater off-stoichiometry on the Y2O3-rich side. Possible defect structures accommodating the solubility extension were examined. Phase selection results indicate that compositional inhomogeneity is not the only reason behind the appearance of hexagonal YAlO3, which is frequently reported during YAG synthesis.


1996 ◽  
Vol 449 ◽  
Author(s):  
I. H. Ho ◽  
G.B. Stringfellow

ABSTRACTA model based on the valence-force-field (VFF) model has been developed specifically for the calculation of the irascibility gaps in III-V nitride alloys. In the dilute limit, this model allows the relaxation of the atoms on both sublattices. It was found that the energy due to bond stretching and bond bending was lowered and the solubility limit was increased substantially when both sublattices were allowed to relax to distances as large as the sixth nearest neighbor positions. Using this model, the equilibrium mole fraction of N in GaP was calculated to be 6×l0−7 at 700°C. This is slightly higher than the calculated results from the semi-empirical delta lattice parameter (DLP) model. Both the temperature dependence and the absolute values of the calculated solubility agree closely with the experimental data. The solubility is more than three orders of magnitude larger than the result obtained using the VFF model with the group V atom positions given by the virtual crystal approximation, i.e., with relaxation of only the first neighbor bonds. Other nitride systems, such as GaAsN, AlPN, AlAsN, InPN, and InAsN were investigated as well. The equilibrium mole fractions of nitrogen in InP and InAs are the highest, which agrees well with recent experimental data where high N concentrations have been produced in InAsN alloys. Calculations were also performed for the alloy systems with mixing on the group III sublattice that are so important for device applications. Allowing relaxation to the 3rd nearest neighbor gives an In solubility in GaN at 800°C of less than 6%. Again, this is in agreement with the results of the DLP model calculation. This result may partially explain the difficulties experienced with the growth of these alloys. Indeed, evidence of solid immiscibility has recently been reported. A significant miscibility gap was also calculated for the AlInN system, but the AlGaN system is completely miscible.


2009 ◽  
Vol 206 (8) ◽  
pp. 1699-1703 ◽  
Author(s):  
Mariana Borcha ◽  
Igor Fodchuk ◽  
Igor Krytsun

2011 ◽  
Vol 311-313 ◽  
pp. 392-395 ◽  
Author(s):  
Kun Yu Shi ◽  
Tao Shen ◽  
Li Hong Xue ◽  
Chun Hao Chen ◽  
You Wei Yan

The nanocrystalline Cu-5wt.%Cr alloy powders were prepared by mechanical alloying. The structural changes were characterized by X-ray diffraction (XRD) technique. A thermodynamic analysis was carried out to predict the change in the solubility limit of this system. It was found that the energy resulting from the MA process is sufficient to increase the solid solubility of immiscible Cr-Cu system. The solid solubility may be extended up to 5 wt.% Cr in Cu after 20 h milling. The formation of the supersaturated solid solution leads to the decrease of Cu lattice parameter. However, it decomposes with the further increase of the milling time, which leads to the increase of Cu lattice parameter.


2017 ◽  
Vol 36 (3) ◽  
pp. 291-297
Author(s):  
Maryana Zagula-Yavorska ◽  
Kamil Gancarczyk ◽  
Jan Sieniawski

AbstractCMSX 4 and Inconel 625 superalloys were coated by platinum layers (3 and 7 μm thick) in the electroplating process. The heat treatment of platinum layers (at 1,050 ˚C for 2 h) was performed to increase platinum adherence to the superalloys substrate. The diffusion zone obtained on CMSX 4 superalloy (3 and 7 μm platinum thick before heat treatment) consisted of two phases: γ-Ni(Al, Cr) and (Al0.25Pt0.75)Ni3. The diffusion zone obtained on Inconel 625 superalloy (3 μm platinum thick before heat treatment) consisted of the α-Pt(Ni, Cr, Al) phase. Moreover, γ-Ni(Cr, Al) phase was identified. The X-ray diffraction (XRD) results revealed the presence of platinum in the diffusion zone of the heat-treated coating (7 μm platinum thick) on Inconel 625 superalloy. The surface roughness parameter Ra of heat-treated coatings increased with the increase of platinum layers thickness. This was due to the unequal mass flow of platinum and nickel.


2006 ◽  
Vol 45 ◽  
pp. 2483-2488
Author(s):  
L. Pablos ◽  
Maria Elena Villafuerte-Castrejón ◽  
A. Ibarra-Palos ◽  
J. Ocotlán-Flores ◽  
R. Sato ◽  
...  

PbBi4Ti4O15 belongs to the bismuth oxide layers family discovered by Aurivillius more than 50 years ago. In the last few years, there has been considerable interest in layered oxides exhibiting ferroelectric, piezoelectric and other related properties due to their wide range of application in technical devices. In the present work the PbBi4Ti4O15 solid solution formed with Eu3+ was synthesized by coprecipitation method and solubility limit was found. All compounds were characterized by scanning electron microscopy, density measurements and X-ray diffraction. The variation of lattice parameter with the Eu3+ concentration was obtained. Raman spectroscopy was carried out in order to determine the Eu3+ site in the lattice. Thermal analysis (thermogravimetry and differencial scanning calorimetry) results are also presented.


2010 ◽  
Vol 636-637 ◽  
pp. 985-990 ◽  
Author(s):  
Tamara Radu ◽  
A. Ciocan ◽  
L. Balint ◽  
O. Mitoseriu

The Zn-Fe layers are recommended in automotive industry and in the adders for the following qualities: a better weldability than the zinc-coated plates, very good capacities for painting and lacquer wear resistance, good adherence, lower zinc consumption by layer thickness below 100g/m2. Important transformation of phases takes place during heating of galvanized parts due to mass transfer iron in the zinc layer and Zn-Fe alloy is formed. Galvanized steel samples were heated 10-30 sec. at 500-650oC. Heat treated samples were metallographic ally examined and X- ray diffraction tested with a view to establish structural and chemical composition change due to heat treatment. As a result of microscopic examination (both optical and electronic) and X-ray diffraction testing in coating layer were detected phase ratio changes, according to heat treatment parameters. Considering that the physico-chemical and mechanical properties differ for the two phases and phase ratio is to decide the properties of the product; these structural changes are of great importance in practice. The desirable coating would be a Zn-Fe coating with 8-10% Fe (according to some authors, up to 12% Fe), with a structure consisting mainly of  phase and a small quantity of  phase. The mathematical correlation between diffusion phenomena occurring in layer, depending on temperature and time of heat treatment, and iron content of coating are presented.


2013 ◽  
Vol 28 (S2) ◽  
pp. S75-S85
Author(s):  
Izabela Jendrzejewska ◽  
Paweł Zajdel ◽  
Ewa Maciążek ◽  
Maria Sozańska ◽  
Tomasz Goryczka

Polycrystalline compounds in the Zn1-xNdxCr2Se4 system were prepared by solid state reaction using selenides (ZnSe, Cr2Se3) and pure elements (Nd, Se) as starting materials. The structural properties were determined by X-ray diffraction and the chemical composition confirmed by SEM-EDX. The observed symmetry is cubic, space group Fd3m, while the lattice parameter varies from 10.4955(7)Å to 10.4976(7)Å, and is larger than for the pure matrix. The solubility limit for the current synthesis route lies below x = 0.1. The magnetic moments, effective and saturation, increase with increasing amount of Nd ions. The Neel temperature TN and ΘCW drop, respectively, to 17.4K and 81K for x = 0.1, independently indicating that neodymium is incorporated into the spinel lattice and promotes antiferromagnetic coupling between the Cr3+ ions.


Sign in / Sign up

Export Citation Format

Share Document