Phase Formation in Cu(Sn) Alloy Thin Films

1996 ◽  
Vol 427 ◽  
Author(s):  
L. A. Clevenger ◽  
B. Arcot ◽  
W. Ziegler ◽  
E. G. Colgan ◽  
Q. Z. Hong ◽  
...  

AbstractThe interdiffusion of Cu and Sn and the formation and dissolution of Cu-Sn precipitate phases have been examined for Cu(Sn) alloy thin films. Cu(Sn) films were deposited by electron beam evaporation in either a Sn/Cu bilayer or Cu/Sn/Cu trilayer film structure, with overall Sn concentrations from 0.1 to 5 atomic percent. Analysis by in situ resistivity, calorimetry, electron diffraction and x-ray diffraction measurements indicates that the bilayer and trilayer films form the intermetallic phase η-Cu6 Sn5 during film deposition. Upon heating, the ε-Cu3Sn phase forms at 170°C, then this phase dissolves into the Cu matrix at approximately 350°C. Finally, ζ- Cu10Sn3 phase forms and precipitates after heating to 500°C and cooling to room temperature. The final resistivity of Cu/Sn/Cu films with more than 2 atomic percent Sn was greater than 3.5 μΩ - cm. However, resistivities from 1.9 to 2.5 μΩ - cm after annealing were obtained with Cu/Sn/Cu films containing less than 2 atomic percent Sn.

2017 ◽  
Vol 111 (8) ◽  
pp. 082907 ◽  
Author(s):  
Seiji Nakashima ◽  
Osami Sakata ◽  
Hiroshi Funakubo ◽  
Takao Shimizu ◽  
Daichi Ichinose ◽  
...  

2018 ◽  
Vol 6 (24) ◽  
pp. 11496-11506 ◽  
Author(s):  
Paul Pistor ◽  
Thomas Burwig ◽  
Carlo Brzuska ◽  
Björn Weber ◽  
Wolfgang Fränzel

We present the identification of crystalline phases by in situ X-ray diffraction during growth and monitor the phase evolution during subsequent thermal treatment of CH3NH3PbX3 (X = I, Br, Cl) perovskite thin films.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2765
Author(s):  
Gabriele Calabrese ◽  
Candida Pipitone ◽  
Diego Marini ◽  
Francesco Giannici ◽  
Antonino Martorana ◽  
...  

In this study, the structure and morphology, as well as time, ultraviolet radiation, and humidity stability of thin films based on newly developed 1D (PRSH)PbX3 (X = Br, I) pseudo-perovskite materials, containing 1D chains of face-sharing haloplumbate octahedra, are investigated. All films are strongly crystalline already at room temperature, and annealing does not promote further crystallization or film reorganization. The film microstructure is found to be strongly influenced by the anion type and, to a lesser extent, by the DMF/DMSO solvent volume ratio used during film deposition by spin-coating. Comparison of specular X-ray diffraction and complementary grazing incidence X-ray diffraction analysis indicates that the use of DMF/DMSO mixed solvents promotes the strengthening of a dominant 100 or 210 texturing, as compared the case of pure DMF, and that the haloplumbate chains always lie in a plane parallel to the substrate. Under specific DMF/DMSO solvent volume ratios, the prepared films are found to be highly stable in time (up to seven months under fluxing N2 and in the dark) and to highly moist conditions (up to 25 days at 78% relative humidity). Furthermore, for representative (PRSH)PbX3 films, resistance against ultraviolet exposure (λ = 380 nm) is investigated, showing complete stability after irradiation for up to 15 h at a power density of 600 mW/cm2. These results make such thin films interesting for highly stable perovskite-based (opto)electronic devices.


2015 ◽  
Vol 3 (43) ◽  
pp. 11357-11365 ◽  
Author(s):  
Geert Rampelberg ◽  
Bob De Schutter ◽  
Wouter Devulder ◽  
Koen Martens ◽  
Iuliana Radu ◽  
...  

VO2 and V2O3 thin films were prepared during in situ XRD investigation by oxidation and reduction of V and V2O5. Films show up to 5 orders of magnitude resistance switching.


2005 ◽  
Vol 244 (1-4) ◽  
pp. 281-284 ◽  
Author(s):  
Naohiko Kato ◽  
Ichiro Konomi ◽  
Yoshiki Seno ◽  
Tomoyoshi Motohiro

Sign in / Sign up

Export Citation Format

Share Document