Characterization of High Strength Cu/Ag Multilayered Composites

1996 ◽  
Vol 451 ◽  
Author(s):  
Qing Zhai ◽  
Dan Kong ◽  
Augusto Morrone ◽  
Fereshteh Ebrahimi

ABSTRACTIn this study, electrodeposition was employed to produce Cu-Ag multilayered nanocomposites using a single-bath cyanide solution. The silver and the copper layers were applied by electroless deposition and galvanostatic electrodeposition methods, respectively. The as-deposited composite showed a very high strength, which was increased upon annealing at 104°C. Annealing at 149°C caused the strength to drop to a level comparable to the strength of electrodeposited pure copper specimens. In this paper, the effect of heat treatment on the mechanical properties and structure of Cu-Ag multilayered nanocomposites is discussed.

Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


2013 ◽  
Vol 58 (1) ◽  
pp. 25-30 ◽  
Author(s):  
G. Golanski ◽  
J. Słania

The paper presents a research on the influence of multistage heat treatment with the assumed parameters of temperature and time on the microstructure and mechanical properties of high-chromium martensitic GX12CrMoVNbN9-1 (GP91) cast steel. In the as-cast state GP91 cast steel was characterized by a microstructure of lath martensite with numerous precipitations of carbides of the M23C6, M3C and NbC type, with its properties higher than the required minimum. Hardening of the examined cast steel contributes to obtaining a microstructure of partly auto-tempered martensite of very high strength properties and impact strength KV on the level of 9-15 J. Quenching and tempering with subsequent stress relief annealing of GP91 cast steel contributed to obtaining the microstructure of high-tempered lath martensite with numerous precipitations of the M23C6 and MX type of diverse size. The microstructure of GP91 cast steel received after heat treatment was characterized by strength properties (yield strength, tensile strength) higher than the required minimum and a very high impact energy KV. It has been proved that GP91 cast steel subject to heat treatment No. 2 as a result of two-time heating above the Ac3 temperature is characterized by the highest impact energy.


2018 ◽  
Vol 144 ◽  
pp. 131-140 ◽  
Author(s):  
Xiangdong Wang ◽  
Qinglin Pan ◽  
Lili Liu ◽  
Shangwu Xiong ◽  
Weiyi Wang ◽  
...  

2019 ◽  
Vol 12 (4) ◽  
pp. 82-91
Author(s):  
Asaad Kadhim Eqal ◽  
Sami Abualnoun Ajeel ◽  
Rabiha S. Yaseen

The relatively low mechanical properties of pure copper at low and high temperature made it very limited applications. The mechanical properties of the copper can be improved by adding a small amount of elements such as Cr. This work consists of four CuCr alloy castings (0.3, 0.8, 1.2 and 1.5%) by using the stir casting method in an argon atmosphere. Then, the heat treatment was done for these alloys which included solution treatment and aging. Heat treatment was treated at 980 ° C for 1 hour, then water-quenching, followed by an aging treatment at 480 ° C for 2.4 and 6 hours. The Optical Microscopy and the Scanning Electron Microscopy (SEM) with  (EDS) were used to study the microscopic structure of the produced alloys. The results showed that the mechanical properties of copper increased with increasing chromium content. The microstructure of the castings consist of  the dendiritic structure, columinar and segregation. It has been also indicated that after heat treatment and aging, the microstructure changed to fine grains and the clusters disappeared. XRD showed a α-Cu phase and a small amount of CrO2 in microstructures. The highest value of hardness and the ultimate tensile were 101 Hv and 239.12 MPa, respectively. They were achieved at 1.5wt% addition of Cr at 480oC and 4hrs aging


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


2021 ◽  
Vol 410 ◽  
pp. 197-202
Author(s):  
Pavel P. Poleckov ◽  
Olga A. Nikitenko ◽  
Alla S. Kuznetsova

This study considers the influence of various heat treatment conditions on the change of steel microstructure parameters, mechanical properties and cold resistance at a temperature of-60 °C. The common behavior of these properties is considered depending on the heating temperature used for quenching and subsequent tempering. Based on the obtained results, heat treatment conditions are proposed that provide a combination of a guaranteed yield point σ0.2 ≥600 N/mm2 with a low-temperature impact toughness KCV-60 ≥50 J/cm2 and plasticity δ5 ≥17%. The obtained research results are intended for industrial use at the mill "5000" site of MMK PJSC.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1023 ◽  
Author(s):  
Byung-Hoon Lee ◽  
Sung-Woo Park ◽  
Soong-Keun Hyun ◽  
In-Sik Cho ◽  
Kyung-Taek Kim

The effect of heat treatment condition on non-Cu AA7021 alloy was investigated with respect to mechanical properties and very high cycle fatigue behavior. With a focus on the influence of heat treatment, AA7021 alloy was solution heat-treated at 470 °C for 4 h and aged at 124 °C. Comparing the results of solution-treated and peak-aged AA7021 alloy shows a significant increase in Vickers hardness and tensile strength. The hardness of AA7021 alloy was increased by 65% after aging treatment, and both tensile strength and yield strength were increased by 50~80 MPa in each case. In particular, this paper investigated the very high cycle fatigue behavior of AA7021 alloy with the ultrasonic fatigue testing method using a resonance frequency of 20 kHz. The fatigue results showed that the stress amplitude of peak-aged AA7021 alloy was about 50 MPa higher than the solution-treated alloy at the same fatigue cycles. Furthermore, it was confirmed that the size of the crack initiation site was larger after peak aging than after solution treatment.


2007 ◽  
Vol 353-358 ◽  
pp. 715-717
Author(s):  
Jian Peng ◽  
Rong Shen Liu ◽  
Ding Fei Zhang ◽  
Cheng Meng Song

The microstructures and mechanical properties of Mg-Zn-Zr-Y alloy extruded bar with different heat treatment processes were investigated, including solution treatments of 400 oC, 450 oC and 500 oC for 3 hours followed by 170 oC×24h aging treatment, and solely aging treatments of 160 oC, 180 oC for 24hours without solution after extruding. By comparing the grain size, strength and elongation of the samples, the heat treatment processes for extruded products with high strength and with medium strength were recommended.


Sign in / Sign up

Export Citation Format

Share Document