Mesoporous Activated Carbon Filaments

1996 ◽  
Vol 454 ◽  
Author(s):  
Weiming Lu ◽  
D. D. L. Chung

ABSTRACTActivated carbon filaments of diameter ∼0.1 μm, main pore size (BJH) 55 Å, specific surface area 1310 m2/g and yield 36.2% were obtained by activating carbon filaments of diameter ∼ 0.1 urn in C02 + N2 (1:1) at 970°C for 80 min. Prior to this activation, the filaments were surface oxidized by exposure to ozone.

1996 ◽  
Vol 431 ◽  
Author(s):  
Weiming Lu ◽  
D. D. L. Chung

AbstractActivated carbon filaments of diameter ∼ 0.1 μm, mean pore size (BJH) 65 Å, specific surface area 1540 m2/g and burn-off 64% (yield 36%) were obtained by activating carbon filaments of diameter ∼ 0.1 μm in CO2 + N2 (1:1) at 970°C for 100 min. Prior to this activation, the filaments were surface oxidized by exposure to ozone (0.3 vol.% in air) at 150°C for 3 min.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2064
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Juhana Jaafar ◽  
...  

Various types of activated carbon nanofibers’ (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs’ structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.


2015 ◽  
Vol 814 ◽  
pp. 286-291
Author(s):  
Bo Tao Wang

Adopting the chemical activation method, the high specific surface area activated carbon (AC) was prepared by the solid mixing method using Daqing petroleum cokes as raw materials and KOH as activator. The influence of the ratio of KOH to carbon, activation temperature and activation time on the iodine and methylene blue adsorption properties of the AC were studied. The micro-graphitic structure of the AC was studied by X-ray diffraction (XRD). The BET specific surface area, BJH pore size distribution and pore volume of the AC were determined by N2 adsorption (at 77K). The experimental results show that the high specific surface area AC can be prepared with the ratio of KOH to carbon of 4, activation temperature of 800°C and activation time of 1h. The specific surface area was as high as 2142 m2/g with the iodine adsorption value of 288mg/g and methylene blue adsorption value of 1266mg/g. The XRD and BJH results also show that amorphous carbon was the dominating form, and the pore size distribution represents micropore structure.


2011 ◽  
Vol 480-481 ◽  
pp. 6-10
Author(s):  
Yan Feng Yang ◽  
Xue Jun Zhang ◽  
Hai Yan Li

General purpose pitch-based carbon fiber (PCF) was pretreated with steam to develop pores on the surface of fiber. After immersed in cobalt salt solution, PCF was used as raw materials to prepare activated carbon fiber (ACF) through steam activation process. The effect of pretreatment of carbon fiber on specific surface area, mesopore volume and pore size distribution was investigated by N2 adsorption, and morphology of the resultant ACF was observed with scanning electron microscope(SEM). The results show that pretreatment of PCF enlarges specific surface area and mesopore ratio of ACF remarkably. The best ACF obtained in experiment is the one with specific surface area of 2670 m2/g and mesoporosity of 61.8%. Cobalt has evident catalysis in preparing ACF from activation of PCF, while specific surface area and pore size of ACF get smaller with cobalt salt immersion when pretreatment is too strong.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Mi Lee ◽  
Seon Ho Lee ◽  
Doo-Hwan Jung

AbstractIn this study, surface oxidation of petroleum pitch was performed to enhance the thermal stability, specific surface area, and mesopore ratio of activated carbon. The oxygen uptake of the pitch by surface oxidation has a strong influence on the formation of the specific surface area and pore size of activated carbon. It was confirmed that the oxygen uptake from the surface to the inner side of the surface oxidized pitch was the highest at the temperature of 330 °C (IP330-AC), with a mesopore ratio of 63.35% and specific surface area of 1811 m2 g−1. The oxygen content of the surface oxidized pitch increased proportionately with the mesopore ratio in activated carbon. The specific surface area and mesopore ratio of IP330-AC were respectively 163% and 487% higher than those of petroleum-based commercial activated carbon (A-BAC), and 102% and 491% higher than those of coconut-based commercial activated carbon (P60).


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2750
Author(s):  
Ju-Hwan Kim ◽  
Hye-Min Lee ◽  
Sang-Chul Jung ◽  
Dong-Chul Chung ◽  
Byung-Joo Kim

Demand for hybrid energy storage systems is growing, but electric double-layer capacitors (EDLCs) have insufficient output characteristics because of the microporous structure of the activated carbon electrode material. Commercially, activated carbon is prepared from coconut shells, which yield an activated carbon material (YP-50F) rich in micropores, whereas mesopores are desired in EDLCs. In this study, we prepared mesoporous activated carbon (PB-AC) using a readily available, environmentally friendly resource: bamboo. Crucially, modification using phosphoric acid and steam activation was carried out, which enabled the tuning of the crystal structure and the pore characteristics of the product. The structural characteristics and textural properties of the PB-AC were determined, and the specific surface area and mesopore volume ratio of the PB-AC product were 960–2700 m2/g and 7.5–44.5%, respectively. The high specific surface area and mesopore-rich nature originate from the phosphoric acid treatment. Finally, PB-AC was used as the electrode material in EDLCs, and the specific capacitance was found to be 86.7 F/g for the phosphoric-acid-treated sample steam activated at 900 °C for 60 min; this capacitance is 35% better than that of the commercial YP-50F (64.2 F/g), indicating that bamboo is a suitable material for the production of activated carbon.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3811
Author(s):  
Zhongbao Liu ◽  
Jiayang Gao ◽  
Xin Qi ◽  
Zhi Zhao ◽  
Han Sun

In this study, the hydrothermal method was used to synthesize MIL-101(Cr), and activated carbon (AC) with different content was incorporated in to MIL-101(Cr), thereby obtaining AC-MIL-101(Cr) composite material with a huge specific surface area. The physical properties of MIL-101(Cr) and AC-MIL-101(Cr) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), nitrogen adsorption and desorption and specific surface area testing, and ethanol vapor adsorption performance testing. The results show that with the increase of activated carbon content, the thermal stability of AC-MIL-101(Cr) is improved. Compared with the pure sample, the BET specific surface area and pore volume of AC-MIL-101(Cr) have increased; In the relative pressure range of 0–0.4, the saturated adsorption capacity of AC-MIL-101(Cr) to ethanol vapor decreases slightly. It is lower than MIL-101(Cr), but its adsorption rate is improved. Therefore, AC-MIL-101(Cr)/ethanol vapor has a good application prospect in adsorption refrigeration systems. The exploration of AC-MIL-101(Cr) composite materials in this paper provides a reference for the future application of carbon-based/MOFS composite adsorbent/ethanol vapor working fluid in adsorption refrigeration.


Sign in / Sign up

Export Citation Format

Share Document