scholarly journals Dissolution Rates of DWPF Glasses from Long-Term PCT

1996 ◽  
Vol 465 ◽  
Author(s):  
W. L. Ebert ◽  
S.-W. Tam

ABSTRACTWe have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 m−1 at 90°C in tuff groundwater at pH values near 12 are about 0.2,0.07, and 0.04 g/(m2•d) for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively.

Author(s):  
Karel Lemmens ◽  
Marc Aertsens ◽  
Véra Pirlet ◽  
Hélène Serra ◽  
Elie Valcke ◽  
...  

Abstract To estimate the life-time of vitrified high level waste (HLW-glass) in geological disposal conditions in Boom Clay, the dissolution behaviour of waste glass has been studied in experiments in surface laboratories and in the HADES underground research facility of SCK•CEN since the 1980’s. The programme consists mainly of dissolution tests. The purpose of these tests is to understand the basic glass dissolution mechanisms, and to demonstrate realistic long-term dissolution rates. The main experimental variables are glass composition, environmental materials, temperature, and test duration. The studied glasses are the COGEMA glass R7T7, and the PAMELA glasses with SM539, SM527 and SM513 glass frit. The environmental materials comprise Boom Clay, metallic corrosion products and engineered barrier materials. Dissolution tests have been performed at temperatures from 40 to 190°C, for test durations from days to several years. The tests are performed with inactive glasses, which can be doped with radionuclides of interest. Because of the importance of silica sorption by the environmental materials, the dissolution test programme was extended with silica diffusion- and sorption tests in Boom Clay and FoCa clay. The interpretation of the experimental results is supported by geochemical and kinetic modeling. In the area of kinetic modeling, both analytical and Monte Carlo codes are applied. The dissolution tests have demonstrated that, although the presence of Boom Clay initially increases the glass dissolution rate, the long-term dissolution rate decreases for diluted clay / clay water slurries. This decrease has not yet been demonstrated for the R7T7 glass in compact Boom Clay, but is expected to occur here also on the long term. The dissolution rate decreases faster after sufficient addition of glass powder to the medium. This was tested in experiments with the R7T7 glass at relatively high clay concentration (2000 g of humid Boom Clay per liter clay water, this is about half the solid/liquid ratio of compact Boom Clay), at 40 and 90°C. Linear interpolation of the long-term mass losses resulted in dissolution rates of ∼ 0.01 g.m−2.day−1. The statistical uncertainties on the dissolution test results did not allow to demonstrate smaller rates. The minimum statistically significant dissolution rate depends on the test conditions. Therefore, the present SCK•CEN programme includes dissolution tests at long-term near-field conditions (this is at 30°C, with compact Boom Clay and FoCa clay), which are considered more representee for the long-term situation. In view of the uncertainties on the experimental long-term dissolution rates and on the long-term dissolution mechanisms, rates smaller than 0.01 g.m−2.day1 (about 1 μ/year) should not be used as best estimate in the present performance assessment studies for disposal in Boom Clay. A constant dissolution rate of 0.01 g.m−2.day−1 would correspond to a dissolution time for a R7T7 glass package of approximately 150 000 years. The minimum dissolution time is of the order of 104 years.


1993 ◽  
Vol 333 ◽  
Author(s):  
William L. Bourcier ◽  
Susan A. Carroll ◽  
Brian L. Phillips

ABSTRACTPredictions of long-term glass dissolution rates are highly dependent on the form of the affinity term in the rate expression. Analysis of the quantitative effect of saturation state on glass dissolution rate for CSG glass (a simple analog of SRL-165 glass), shows that a simple (1-Q/K) affinity term does not match experimental results. Our data at 100°C show that the data is better fit by an affinity term having the form where σ =10.


2006 ◽  
Vol 932 ◽  
Author(s):  
Stéphane Gin ◽  
Jean-Louis Chouchan ◽  
Danièle Foy

ABSTRACTAn archaeological glass initially fractured and altered for 1800 years in a marine environment is now being examined by the CEA because of its strong morphological similarity to the nuclear glasses used for immobilization of long-lived radionuclides (i.e. the presence of fractures and cracks formed during cooling, which significantly increase the surface area accessible to water). The issue concerns glass alteration by water, and in particular the different behavior of the external surfaces in contact with a solution highly renewed and the internal surfaces, which constitute a much more confined medium.The preliminary results of this study are discussed. The cracks in the archaeological glass have been filled by crystallized alteration products formed jointly by elements from the glass and elements dissolved in seawater. The glass is distinctly less altered (by a factor of 10 to 100) on the internal surfaces generated by the cracks than on the external surfaces. The forward glass dissolution rate was measured at different temperatures on pristine glass samples and under conditions that allowed us to estimate the dissolution rate of the external surfaces under realistic conditions at about 200 μm in 1800 years. The implications of this study are then discussed.


Clay Minerals ◽  
1987 ◽  
Vol 22 (3) ◽  
pp. 329-337 ◽  
Author(s):  
J. Torrent ◽  
U. Schwertmann ◽  
V. Barron

AbstractThe reductive dissolution by Na-dithionite of 28 synthetic goethites and 26 hematites having widely different crystal morphologies, specific surfaces and aluminium substitution levels has been investigated. For both minerals the initial dissolution rate per unit of surface area decreased with aluminium substitution. At similar aluminium substitution and specific surface, goethites and hematites showed similar dissolution rates. These results suggest that preferential, reductive dissolution of hematite in some natural environments, such as soils or sediments, might be due to the generally lower aluminium substitution of this mineral compared to goethite.


Author(s):  
Michael I. Ojovan ◽  
Natalia V. Ojóvan ◽  
Irene V. Startceva ◽  
Zoja I. Golubeva ◽  
Alexander S. Barinov

Abstract A mathematical model was used to predict radionuclide release from bitumen and glass waste forms over extended time periods. To calculate some model parameters, we used experimental data derived from 12yr field tests with six borosilicate waste glass blocks (each ∼30 kg in weight) and a bitumen block (310 kg), containing real intermediate-level NPP operational waste (NaNO3, 86 wt.% of a dry salt content; 137Cs, 82% of the radioactive inventory). Specific radioactivities of the glass material containing 35 wt.% waste oxides were βtot(90Sr+90Y), 3.74×106 Bq/kg, and αtot(239Pu), 1.3×104Bq/kg. The bitumen block with ∼31 wt.% salt content and βtot(90Sr+90Y), 4.0·106 Bq/kg, and αtot(239Pu), 3.0×103 Bq/kg was manufactured on base of a hard bitumen BN-IV. Tests with the waste forms were performed under saturated conditions of an experimental near-surface repository with a free access of groundwater to the waste blocks through a covering of host loamy soil and backfill of coarse sand. The way used to quantify the amount of leached radioactivity was to measure the volume and radioactivity concentrations of contacting groundwater. In the model, radionuclide release from the waste glass is assumed to be controlled by the processes of diffusion limited ion exchange and glass network dissolution. The mechanism of radionuclide release from the bitumen matrix is believed to remain the same throughout the long-term storage period, except for the initial stage when an enhanced leaching from the surface layer occurs. This long-term release is assumed to be controlled by diffusion of radionuclides through the bitumen matrix. So, identical formulae were applied to calculate the values of leached radioactivity fractions for two waste forms. Radioactivity release curves were plotted for field data and calculation results. For both waste forms, there was good agreement between the modelled and available experimental data. According to the modelling results, fmax = 2.3×10−3% of the initial radioactivity will release from the waste glass into the environment within a proposed institutional control period of 300 years under conditions of the near-surface repository and in the absence of additional engineered barriers. For the bitumen block and the same 300-yr period, the total (maximum) leached radioactivity fraction will be fmax = 4.2×10−3%. The main result of the modelling and experimental studies concerning the leaching behaviour of the bituminised and vitrified waste materials is that the fractional radioactivity release for two waste forms is on the same order of magnitude. Numerical release values per a unit of a surface area to volume ratio are also rather close for two waste forms (exposed surface area to volume ratio for the bitumen block is 2 to 4 times greater then for the glass).


1993 ◽  
Vol 333 ◽  
Author(s):  
B. Grambow ◽  
Kernforschungszentrum Karlsruhe

ABSTRACTThe current knowledge on the glass dissolution mechanism and the representation of glass dissolution concepts within overall repository performance assessment models are briefly summarized and uncertainties related to mechanism, radionuclide chemistry and parameters are discussed. Understanding of the major glass dissolution processes has been significantly increased in recent years. Long-term glass stability is related to the long-term maintenance of silica saturated conditions. The behavior of individual radionuclides in the presence of a dissolving glass has not been sufficiently and results do not yet allow meaningful predictions. Conservative long-term predictions of glass matrix dissolution as upper limit for radionuclide release can be made with sufficient confidence, however these estimations generally result in a situation were the barrier function of the glass is masked by the efficiency of the geologic barrier. Realistic long-term predictions may show that the borosilicate waste glass contributes to overall repository safety to a much larger extent than indicated by overconservatism. Today realistic predictions remain highly uncertain and much more research work is necessary. In particular the long-term rate under silica saturated conditions needs to be understood and the behavior of individual radionuclides in the presence of a dissolving glass deserves more systematic investigations.


1989 ◽  
Vol 176 ◽  
Author(s):  
William L. Bourcier ◽  
Dennis W. Peiffer ◽  
Kevin G. Knauss ◽  
Kevin D. McKeegan ◽  
David K. Smith

ABSTRACTA kinetic model for the dissolution of borosilicate glass, incorporated into the EQ3/6 geochemical modeling code, is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkalidepleted amorphous surface (gel) layer. Assuming that the gel layer dissolution affinity controls glass dissolution rates is similar to the silica saturation concept of Grambow [1] except that our model predicts that all components concentrated in the surface layer, not just silica, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations.


2006 ◽  
Vol 932 ◽  
Author(s):  
Sonia Salah ◽  
Christelle Cachoir ◽  
Karel Lemmens ◽  
Norbert Maes

ABSTRACTSince reprocessing is no longer the reference policy in Belgium, studies on the direct disposal of spent fuel in a clay formation have gained increased interest in the last years. In order to determine to what extent the clay properties and the α-activity influence the dissolution kinetics of spent fuel for the long term disposal, static dissolution tests have been performed on 5 different types of α-doped UO2, representing a PWR fuel with a burn-up of 45 or 55 GWd · tHM−1 and fuel ages ranging between 150 and 90,000 years, in different Boom Clay (BC) media at room temperature and in an anoxic atmosphere for 90 to 720 days. The uranium activity in the clay fraction over time was found to be much higher than the U-activity in the leachates, which has been mainly ascribed to the high retention capacity of the BC. The average dissolution rate between 0 and 90 days obtained for the 5 types of α-doped UO2 were all found to be high and quite similar at ~263 µg · m−2 · d−1and a “longer-term” rate (181 to 720 days) ranging between zero and 15 µg · m−2· d−1. These results suggest that the activity of the fuels does not seem to have an effect on the UO2 dissolution rates under the considered test conditions. In order to study the partition/redistribution of U during UO2dissolution, sequential extraction experiments were performed. Results of the latter have provided a better mechanistic understanding of BC/spent fuel interaction processes as well as information on the role of the different minerals controlling the U-retention/immobilization.


2012 ◽  
Vol 1475 ◽  
Author(s):  
Th. Mennecart ◽  
C. Cachoir ◽  
K. Lemmens

ABSTRACTTo assess the long-term behavior of spent fuel in alkaline conditions representative for the Belgian Supercontainer design, static and dynamic dissolution tests were performed with depleted and Pu-doped UO2 , simulating medium burn-up UOX fuels of different fuel ages. The experiments were performed under argon atmosphere at 25 – 30°C in cement waters in the pH range 11.7 – 13.5 and at different SA/V ratios. This paper presents the observed UO2 matrix dissolution rates based on the (238U or 233U) release, and proposes a selection of reference dissolution rates for performance assessment. We demonstrate that the dissolution rates at high pH are equivalent to the dissolution rates reported in the literature for neutral pH conditions. The α-activity threshold below which radiolytical fuel oxidation becomes negligible, seems to be close to the threshold reported for anoxic media at neutral pH.


1997 ◽  
Vol 506 ◽  
Author(s):  
B. Luckscheiter ◽  
B. Grambow

ABSTRACTRadionuclide release rates of HLW glasses in brines are normally orders of magnitude lower than glass corrosion rates. Various mechanisms were invoked to explain the experimental release; they may be controlled by the glass dissolution rate, solubility, sorption, coprecipitation, etc.. Glass matrix corrosion kinetics is described by a first order equation, where pH, S/V ratio, an initial constant rate and affinity term based on orthosilic acid activity are the key parameters. The dissolution rate decreases significantly as dissolved silica accumulates in solution


Sign in / Sign up

Export Citation Format

Share Document