scholarly journals Constraints on the Affinity Term for Modeling Long-Term Glass Dissolution Rates

1993 ◽  
Vol 333 ◽  
Author(s):  
William L. Bourcier ◽  
Susan A. Carroll ◽  
Brian L. Phillips

ABSTRACTPredictions of long-term glass dissolution rates are highly dependent on the form of the affinity term in the rate expression. Analysis of the quantitative effect of saturation state on glass dissolution rate for CSG glass (a simple analog of SRL-165 glass), shows that a simple (1-Q/K) affinity term does not match experimental results. Our data at 100°C show that the data is better fit by an affinity term having the form where σ =10.

1996 ◽  
Vol 465 ◽  
Author(s):  
W. L. Ebert ◽  
S.-W. Tam

ABSTRACTWe have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 m−1 at 90°C in tuff groundwater at pH values near 12 are about 0.2,0.07, and 0.04 g/(m2•d) for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively.


Author(s):  
Karel Lemmens ◽  
Marc Aertsens ◽  
Véra Pirlet ◽  
Hélène Serra ◽  
Elie Valcke ◽  
...  

Abstract To estimate the life-time of vitrified high level waste (HLW-glass) in geological disposal conditions in Boom Clay, the dissolution behaviour of waste glass has been studied in experiments in surface laboratories and in the HADES underground research facility of SCK•CEN since the 1980’s. The programme consists mainly of dissolution tests. The purpose of these tests is to understand the basic glass dissolution mechanisms, and to demonstrate realistic long-term dissolution rates. The main experimental variables are glass composition, environmental materials, temperature, and test duration. The studied glasses are the COGEMA glass R7T7, and the PAMELA glasses with SM539, SM527 and SM513 glass frit. The environmental materials comprise Boom Clay, metallic corrosion products and engineered barrier materials. Dissolution tests have been performed at temperatures from 40 to 190°C, for test durations from days to several years. The tests are performed with inactive glasses, which can be doped with radionuclides of interest. Because of the importance of silica sorption by the environmental materials, the dissolution test programme was extended with silica diffusion- and sorption tests in Boom Clay and FoCa clay. The interpretation of the experimental results is supported by geochemical and kinetic modeling. In the area of kinetic modeling, both analytical and Monte Carlo codes are applied. The dissolution tests have demonstrated that, although the presence of Boom Clay initially increases the glass dissolution rate, the long-term dissolution rate decreases for diluted clay / clay water slurries. This decrease has not yet been demonstrated for the R7T7 glass in compact Boom Clay, but is expected to occur here also on the long term. The dissolution rate decreases faster after sufficient addition of glass powder to the medium. This was tested in experiments with the R7T7 glass at relatively high clay concentration (2000 g of humid Boom Clay per liter clay water, this is about half the solid/liquid ratio of compact Boom Clay), at 40 and 90°C. Linear interpolation of the long-term mass losses resulted in dissolution rates of ∼ 0.01 g.m−2.day−1. The statistical uncertainties on the dissolution test results did not allow to demonstrate smaller rates. The minimum statistically significant dissolution rate depends on the test conditions. Therefore, the present SCK•CEN programme includes dissolution tests at long-term near-field conditions (this is at 30°C, with compact Boom Clay and FoCa clay), which are considered more representee for the long-term situation. In view of the uncertainties on the experimental long-term dissolution rates and on the long-term dissolution mechanisms, rates smaller than 0.01 g.m−2.day1 (about 1 μ/year) should not be used as best estimate in the present performance assessment studies for disposal in Boom Clay. A constant dissolution rate of 0.01 g.m−2.day−1 would correspond to a dissolution time for a R7T7 glass package of approximately 150 000 years. The minimum dissolution time is of the order of 104 years.


1989 ◽  
Vol 176 ◽  
Author(s):  
William L. Bourcier ◽  
Dennis W. Peiffer ◽  
Kevin G. Knauss ◽  
Kevin D. McKeegan ◽  
David K. Smith

ABSTRACTA kinetic model for the dissolution of borosilicate glass, incorporated into the EQ3/6 geochemical modeling code, is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkalidepleted amorphous surface (gel) layer. Assuming that the gel layer dissolution affinity controls glass dissolution rates is similar to the silica saturation concept of Grambow [1] except that our model predicts that all components concentrated in the surface layer, not just silica, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations.


2006 ◽  
Vol 932 ◽  
Author(s):  
Stéphane Gin ◽  
Jean-Louis Chouchan ◽  
Danièle Foy

ABSTRACTAn archaeological glass initially fractured and altered for 1800 years in a marine environment is now being examined by the CEA because of its strong morphological similarity to the nuclear glasses used for immobilization of long-lived radionuclides (i.e. the presence of fractures and cracks formed during cooling, which significantly increase the surface area accessible to water). The issue concerns glass alteration by water, and in particular the different behavior of the external surfaces in contact with a solution highly renewed and the internal surfaces, which constitute a much more confined medium.The preliminary results of this study are discussed. The cracks in the archaeological glass have been filled by crystallized alteration products formed jointly by elements from the glass and elements dissolved in seawater. The glass is distinctly less altered (by a factor of 10 to 100) on the internal surfaces generated by the cracks than on the external surfaces. The forward glass dissolution rate was measured at different temperatures on pristine glass samples and under conditions that allowed us to estimate the dissolution rate of the external surfaces under realistic conditions at about 200 μm in 1800 years. The implications of this study are then discussed.


1989 ◽  
Vol 176 ◽  
Author(s):  
T. Advocat ◽  
J.L. Crovisier ◽  
B. Fritz ◽  
E. Vernaz

ABSTRACTShort and long-term geochemical interactions of R7T7 nuclear glass with water at 100°C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Hegelson: v = k+.S.a(H+)-n(l - e-(A/RT)). It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. We prefer to replace the term “residual affinity” by “contextual affinity”, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO2(m), and the possible precipitation of certain aluminosilicates such as zeolites.


2006 ◽  
Vol 932 ◽  
Author(s):  
G. de Combarieu ◽  
P. Barboux ◽  
N. Godon ◽  
Y. Minet ◽  
S. Gin

ABSTRACTThe model tested in this paper couples glass dissolution rate and geochemistry in the surrounding environment, thus leading to the comprehensive description of the interactions between the glass and the minerals and their transformations. Leaching of glass is simulated at 90°C and S/V=80 cm-1 in pure water or with iron from the canister and overpack or with argillite. The glass dissolution is described with an affinity law with respect to a nontronite-like phase, which saturation state depends on Si, Al, Fe, Na and Ca activities. The simulations results allow to reproduce both the decrease of the initial alteration rate and the so-called residual regime while the composition of the alteration layers are explained in terms of precipitated phases. In presence of metallic iron, the corrosion does not affect much glass dissolution rate if silica sorption is neglected. On the contrary, in presence of argillite, the alteration is enhanced by the dissolution of primary clay minerals and the precipitation of feldspar, K-zeolite and clay minerals.


1990 ◽  
Vol 212 ◽  
Author(s):  
William L. Bourcier

ABSTRACTGlass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alteration layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer.Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues.


Clay Minerals ◽  
1987 ◽  
Vol 22 (3) ◽  
pp. 329-337 ◽  
Author(s):  
J. Torrent ◽  
U. Schwertmann ◽  
V. Barron

AbstractThe reductive dissolution by Na-dithionite of 28 synthetic goethites and 26 hematites having widely different crystal morphologies, specific surfaces and aluminium substitution levels has been investigated. For both minerals the initial dissolution rate per unit of surface area decreased with aluminium substitution. At similar aluminium substitution and specific surface, goethites and hematites showed similar dissolution rates. These results suggest that preferential, reductive dissolution of hematite in some natural environments, such as soils or sediments, might be due to the generally lower aluminium substitution of this mineral compared to goethite.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 983
Author(s):  
Shixu Wu ◽  
Keting Tong ◽  
Jianmin Wang ◽  
Yushun Li

To expand the application of bamboo as a building material, a new type of box section composite column that combined bamboo and steel was considered in this paper. The creep characteristics of eight bamboo-steel composite columns with different parameters were tested to evaluate the effects of load level, section size and interface type under long-term loading. Then, the deformation development of the composite column under long-term loading was observed and analyzed. In addition, the creep-time relationship curve and the creep coefficient were created. Furthermore, the creep model of the composite column was proposed based on the relationship between the creep of the composite column and the creep of bamboo, and the calculated value of creep was compared with the experimental value. The experimental results showed that the creep development of the composite column was fast at first, and then became stable after about 90 days. The creep characteristics were mainly affected by long-term load level and section size. The creep coefficient was between 0.160 and 0.190. Moreover, the creep model proposed in this paper was applicable to predict the creep development of bamboo-steel composite columns. The calculation results were in good agreement with the experimental results.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
C. Carriere ◽  
P. Dillmann ◽  
S. Gin ◽  
D. Neff ◽  
L. Gentaz ◽  
...  

AbstractThe French concept developed to dispose high-level radioactive waste in geological repository relies on glassy waste forms, isolated from the claystone host rock by steel containers. Understanding interactions between glass and surrounding materials is key for assessing the performance of a such system. Here, isotopically tagged SON68 glass, steel and claystone were studied through an integrated mockup conducted at 50 °C for 2.5 years. Post-mortem analyses were performed from nanometric to millimetric scales using TEM, STXM, ToF-SIMS and SEM techniques. The glass alteration layer consisted of a crystallized Fe-rich smectite mineral, close to nontronite, supporting a dissolution/reprecipitation controlling mechanism for glass alteration. The mean glass dissolution rate ranged between 1.6 × 10−2 g m−2 d−1 to 3.0 × 10−2 g m−2 d−1, a value only 3–5 times lower than the initial dissolution rate. Thermodynamic calculations highlighted a competition between nontronite and protective gel, explaining why in the present conditions the formation of a protective layer is prevented.


Sign in / Sign up

Export Citation Format

Share Document