Aluminum Nitride Thin Films Grown by Plasma-Assisted Pulsed Laser Deposition on Si Substrates

1997 ◽  
Vol 468 ◽  
Author(s):  
M. Okamoto ◽  
T. Ogawa ◽  
Y. Mori ◽  
T. Sasaki

ABSTRACTThe smooth and highly oriented AlN films were obtained using pulsed laser deposition from sintered AlN target in a nitrogen ambient. The XRD investigation revealed that highly oriented AlN thin films along the c-axis (AlN (0002)) normal to the substrate were obtained both on Si(111) and on Si(100) substrates. The (0002) x-ray peak width became narrower with increasing substrate temperature. The CL investigation showed that AlN films at high laser energy density (Ed) indicated CL peak at shorter wavelength (306nm) than that at low Ed (394nm). N/Al atomic ratio in AlN films grown at high Ed also increased as comparison with the films grown at low Ed.

2003 ◽  
Vol 780 ◽  
Author(s):  
V. Craciun ◽  
D. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractZrC thin films were grown on Si substrates by the pulsed laser deposition (PLD) technique. X- ray photoelectron spectroscopy, x-ray diffraction and reflectivity, variable angle spectroscopic ellipsometry, and four point probe measurements were used to investigate the composition, density, thickness, surface morphology, optical and electrical properties of the grown structures. It has been found that crystalline films could be grown only by using fluences above 6 J/cm2 and substrate temperatures in excess of 500 °C. For a fluence of 10 J/cm2 and a substrate temperature of 700 °C, highly (100)-textured ZrC films exhibiting a cubic structure (a=0.469 nm) and a density of 6.7 g/cm3 were deposited. The use of a low-pressure atmosphere of C2H2 had a beneficial effect on crystallinity and stoichiometry of the films. All films contained high levels of oxygen contamination, especially in the surface region, because of the rather reactive nature of Zr atoms.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Evan Lyle Thomas ◽  
Xueyan Song ◽  
Yonggao Yan ◽  
Joshua Martin ◽  
Winnie Wong-Ng ◽  
...  

AbstractThe influence of incorporating nanoparticulate additions into Ca3Co4O9 (CCO) thin films prepared by pulsed laser deposition using composite targets of CCO and CCO + 3wt% BaZrO3 (BZO) on Si and LaAlO3 substrates is investigated. X-ray data and high-resolution scanning electron microscopy reveal preferred c-axis orientation of the films deposited on Si substrates with the formation of nanoparticles between ∼ 10 – 50 nm. Preliminary thermoelectric behavior shows an enhancement of the power factor α2/ρ at room temperature. The microstructure and thermoelectric behavior of the CCO films are compared to the BZO-doped films.


1995 ◽  
Vol 395 ◽  
Author(s):  
R.D. Vispute ◽  
H. Wu ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTAIN thin films have been grown epitaxially on Si(111) and Al2O3(0001) substrates by pulsed laser deposition. These films were characterized by FTIR and UV-Visible, x-ray diffraction, high resolution transmission electron and scanning electron microscopy, and electrical resistivity. The films deposited on silicon and sapphire at 750-800°C and laser energy density of ∼ 2 to 3J/cm2 are epitaxial with an orientational relationship of AIN[0001]║ Si[111], AIN[2 110]║Si[011] and AlN[0001]║Al2O3[0001], AIN[1 2 1 0]║ Al2O3[0110] and AIN[1010] ║ Al2O3[2110]. The both AIN/Si and AIN/Al2O3 interfaces were found to be quite sharp without any indication of interfacial reactions. The absorption edge measured by UV-Visible spectroscopy for the epitaxial AIN film grown on sapphire was sharp and the band gap was found to be 6.1eV. The electrical resistivity of the films was about 5-6×l013Ω-cm with a breakdown field of 5×106V/cm. We also found that the films deposited at higher laser energy densities ≥10J/cm2 and lower temperatures ≤650°C were nitrogen deficient and containing free metallic aluminum which degrade the microstructural, electrical and optical properties of the AIN films


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


1992 ◽  
Vol 7 (10) ◽  
pp. 2639-2642 ◽  
Author(s):  
R.K. Singh ◽  
Deepika Bhattacharya ◽  
S. Sharan ◽  
P. Tiwari ◽  
J. Narayan

We have fabricated Ni3Al and NiAl thin films on different substrates by the pulsed laser deposition (PLD) technique. A high energy nanosecond laser beam was directed onto Ni–Al (NiAl, Ni3Al) targets, and the evaporated material was deposited onto substrates placed parallel to the target. The substrate temperature was varied between 300 and 400 °C, and the substrate-target distance was maintained at approximately 5 cm. The films were analyzed using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectrometry. At energy densities slightly above the evaporation threshold, a slight enrichment of Al was observed, while at higher energy densities the film stoichiometry was close (<5%) to the target composition. Barring a few particles, the surface of the films exhibited a smooth morphology. X-ray and TEM results corroborated the formation of Ni3Al and NiAl films from similar target compositions. These films were characterized by small randomly oriented grains with grain size varying between 200 and 400 Å.


2019 ◽  
Vol 6 (10) ◽  
pp. 106421
Author(s):  
Guankong Mo ◽  
Jiahui Liu ◽  
Guotao Lin ◽  
Zhuoliang Zou ◽  
Zeqi Wei ◽  
...  

2005 ◽  
Vol 19 (01n03) ◽  
pp. 533-535
Author(s):  
J. H. HAO ◽  
J. GAO

We have developed a process to grow SrTiO 3 ( STO ) thin films showing single (110) orientation directly on Si by means of pulsed laser deposition technique. The growth of STO films directly on Si has been described. The crystallinity of the grown STO films was characterized by X-ray diffraction analysis of θ-2θ scan and rocking curve. Our results may be of interest for better understanding of the growth based on the perovskite oxide thin films on silicon materials.


2008 ◽  
Vol 368-372 ◽  
pp. 308-311
Author(s):  
F.K. Shan ◽  
G.X. Liu ◽  
Byoung Chul Shin ◽  
Won Jae Lee ◽  
W.T. Oh

High-quality In2O3 powder and ZnO powder had been used to make the ceramic target and the atomic ratio of 1 to 1 of indium and zinc had been prepared in this study. The alloyed thin films had been deposited on sapphire (001) substrates at different temperatures (100–600°C) by using pulsed laser deposition (PLD) technique. An x-ray diffractometer and an atomic force microscope were used to investigate the structural and morphological properties of the alloyed thin films. It was observed that the alloyed thin films deposited at the temperatures lower than 300°C were amorphous, and the alloyed thin films deposited at high temperatures were crystallized. A spectrophotometer was used to investigate the transmittances of the alloyed thin films. It was found that the alloyed thin films were of high quality. The band gap energies of the alloys were calculated by linear fitting the sharp absorption edges of the transmittance spectra. The Hall measurements were also carried out to identify the electrical properties of the thin films.


2012 ◽  
Vol 1432 ◽  
Author(s):  
M. Baseer Haider ◽  
M. F. Al-Kuhaili ◽  
S. M. A. Durrani ◽  
Imran Bakhtiari

Abstract:Gallium nitride thin films were grown by pulsed laser deposition. Subsequently, post-growth annealing of the samples was performed at 400, and 600 oC in the nitrogen atmosphere. Surface morphology of the as-grown and annealed samples was performed by atomic force microscopy, surface roughness of the films improved after annealing. Chemical analysis of the samples was performed using x-ray photon spectroscopy, stoichiometric Gallium nitride thin films were obtained for the samples annealed at 600 oC. Optical measurements of the samples were performed to investigate the effect of annealing on the band gap and optical constants the films.


Sign in / Sign up

Export Citation Format

Share Document