Structural Inhomogeneities and Resistivity in Radiation Damaged LA2/3(CA,SR)1/3MNO3-δ Pulsed Laser Deposited Thin Films

1997 ◽  
Vol 474 ◽  
Author(s):  
R. M. Stroud ◽  
V. M. Browning ◽  
J. M. Byers ◽  
D. B. Chrisey ◽  
W. W. Fuller-Mora ◽  
...  

ABSTRACTThe relationship between structural distortions and resistivity in pulsed laser deposited La2/3Ca1/3MnO3 (LCMO) and La2/3Ca1/3MnO3 (LSMO) thin films was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM) and resistivity measurements. The growth defects inherent to annealed films were characterized, and then additional defects were introduced by radiation damage. Epitaxially grown films on (100) LaA1O3 substrates exhibited three primary types of growth defects: interface strain, column boundary mismatch, and column rotation. High resolution TEM measurements show well-ordered regions of film that offer low resistance paths for current flow around growth defects. A series of annealed samples were irradiated with 6 Mev Si+3 ions to produce 0.006 to 0.024 displacements per atom (dpa) in LCMO films, and 0.028 to 0.14 dpa in LSMO films. The peak resistance temperature (Tp) was found to depend strongly on defect concentration, varying from 235K ± 15K for the unirradiated LCMO films to 95K for 0.018 dpa. At 0.024 dpa, the LCMO film was insulating at all temperatures. LSMO films showed a downward shift in Tp from 300K for an unirradiated film to 250K for 0.028 dpa, and complete insulating behavior for 0.14 dpa.

1999 ◽  
Vol 14 (6) ◽  
pp. 2355-2358 ◽  
Author(s):  
M. H. Corbett ◽  
G. Catalan ◽  
R. M. Bowman ◽  
J. M. Gregg

Pulsed laser deposition has been used to make two sets of lead magnesium niobate thin films grown on single-crystal h100j MgO substrates. One set was fabricated using a perovskite-rich target while the other used a pyrochlore-rich target. It was found that the growth conditions required to produce almost 100% perovskite Pb(Mg1/3Nb2/3)O3 (PMN) films were largely independent of target crystallography. Films were characterized crystallographically using x-ray diffraction and plan view transmission electron microscopy, chemically using energy dispersive x-ray analysis, and electrically by fabricating a planar thin film capacitor structure and monitoring capacitance as a function of temperature. All characterization techniques indicated that perovskite PMN thin films had been successfully fabricated.


1993 ◽  
Vol 8 (6) ◽  
pp. 1209-1212 ◽  
Author(s):  
Vivek Mehrotra ◽  
Simon Kaplan ◽  
Albert J. Sievers ◽  
Emmanuel P. Giannelis

Ba0.75Sr0.25TiO3 thin films have been deposited on single-crystal MgO substrates by pulsed laser deposition with the objective of forming ferroelectric films with a low Curie temperature. The films have been characterized by capacitance measurements and by transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectrometry (random and channeled). Films deposited with the substrate at 500 °C are polycrystalline, while those deposited at 650 °C are highly aligned and possibly epitaxial. The films are transparent in the visible region with an optical absorption edge at about 300 nm. Capacitance measurements on the polycrystalline films reveal a Curie transition at 283 K. The lowering of Curie temperature from the corresponding bulk sample is attributed to the films being under compression, as verified by Raman spectroscopy.


2019 ◽  
Vol 09 (04) ◽  
pp. 1950032 ◽  
Author(s):  
Yuxin An ◽  
Liyan Dai ◽  
Ying Wu ◽  
Biao Wu ◽  
Yanfei Zhao ◽  
...  

In this work, we have successfully grown high quality epitaxial [Formula: see text]-Ga2O3 thin films on [Formula: see text]-Ga2O3 (100) and Al2O3(0001) substrates using pulsed laser deposition (PLD). By optimizing temperature and oxygen pressure, the best conditions were found to be 650–700∘C and 0.5[Formula: see text]Pa. To further improve the quality of hetero-epitaxial [Formula: see text]-Ga2O3, the sapphire substrates were pretreated for atomic terraced surface by chemical cleaning and high temperature annealing. From the optical transmittance measurements, the films grown at 600–750∘C exhibit a clear absorption edge at deep ultraviolet region around 250–275[Formula: see text]nm wavelength. High resolution transmission electron microscope (HRTEM) images and X-ray diffraction (XRD) patterns demonstrate that [Formula: see text]-Ga2O3(-201)//Al2O3(0001) epitaxial texture dominated the epitaxial oxide films on sapphire substrate, which opens up the possibilities of high power electric devices.


1995 ◽  
Vol 385 ◽  
Author(s):  
M. Grant Norton ◽  
Wenbiao Jiang ◽  
J. Thomas Dickinson

ABSTRACTThin films of polytetrafluoroethylene have been formed by the pulsed-laser deposition technique. The structure of the films was found to be dependent upon the substrate temperature during deposition. At substrate temperatures from room temperature to 200°C the films were determined, by transmission electron microscopy and X-ray diffraction techniques, to be amorphous. Films formed at higher substrate temperatures were found to contain both amorphous and crystalline components. The data for the crystalline component is consistent with it being highly ordered with the long helical molecular chains aligned parallel to the film-substrate interface plane. The maximum amount of crystalline material occurred when the substrate temperature was close to the melting temperature of the polymer.


1997 ◽  
Vol 493 ◽  
Author(s):  
J. C. Jiang ◽  
X. Pan ◽  
C. L. Chen

ABSTRACTThe structural characteristics of SrRuO3 thin films deposited on a (001) SrTiO3 substrate by pulsed laser were studied by transmission electron microscopy (TEM) and high-resolution TEM. TEM studies of cross-sectional specimens revealed the epitaxial growth of the films with the SrRuO3-(110) plane parallel to the SrTiO3-(001) plane. Two types of 90° rotational domain structures were observed in both cross-sectional and plan-viewing specimens. The in-plane orientations of these domains with respect to the substrate are either of SrRuO3-[110] // SrTiO3 - [100] and SrRuO3-[001] // SrTiO3-[010], or of SrRuO3-[110] // SrTiO3-[010] and SrRuO3-[001] // SrTiO3-[100].


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


2002 ◽  
Vol 720 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
Daniel M. Potrepka ◽  
Steven C. Tidrow

AbstractFerroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba0.6Sr0.4Ti1-y(A 3+, B5+)yO3 thin films, of nominal thickness of 0.65 μm, were synthesized initially at substrate temperatures of 400°C, and subsequently annealed to 750°C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the postannealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2010 ◽  
Vol 75 ◽  
pp. 202-207
Author(s):  
Victor Ríos ◽  
Elvia Díaz-Valdés ◽  
Jorge Ricardo Aguilar ◽  
T.G. Kryshtab ◽  
Ciro Falcony

Bi-Pb-Sr-Ca-Cu-O (BPSCCO) and Bi-Pb-Sb-Sr-Ca-Cu-O (BPSSCCO) thin films were grown on MgO single crystal substrates by pulsed laser deposition. The deposition was carried out at room temperature during 90 minutes. A Nd:YAG excimer laser ( = 355 nm) with a 2 J/pulse energy density operated at 30 Hz was used. The distance between the target and substrate was kept constant at 4,5 cm. Nominal composition of the targets was Bi1,6Pb0,4Sr2Ca2Cu3O and Bi1,6Pb0,4Sb0,1Sr2Ca2Cu3OSuperconducting targets were prepared following a state solid reaction. As-grown films were annealed at different conditions. As-grown and annealed films were characterized by XRD, FTIR, and SEM. The films were prepared applying an experimental design. The relationship among deposition parameters and their effect on the formation of superconducting Bi-system crystalline phases was studied.


1998 ◽  
Vol 545 ◽  
Author(s):  
J. C. Caylor ◽  
A. M. Stacy ◽  
T. Sands ◽  
R. Gronsky

AbstractBulk skutterudite phases based on the CoAs3 structure have yielded compositions with a high thermoelectric figure-of-merit (“ZT”) through the use of doping and substitutional alloying. It is postulated that further enhancements in ZT may be attained in artificially structured skutterudites by engineering the microstructure to enhance carrier mobility while suppressing the phonon component of the thermal conductivity. In this work the growth and properties of singlephase CoSb3 and IrSb3 skutterudite thin films are reported. The films are synthesized by pulsed laser deposition (PLD) where the crystallinity can be controlled by the deposition temperature. Powder X-ray diffraction (PXRD), Transmission electron microscopy (TEM) and Rutherford- Back Scattering (RBS) were used to probe phase, structure, morphology and stoichiometry of the films as functions of growth parameters and substrate type. A substrate temperature of 250°C was found to be optimal for the deposition of the skutterudites from stoichiometric targets. Above this temperature the film is depleted of antimony due to its high vapor pressure eventually reaching a composition where the skutterudite structure is no longer stable. However, when films are grown from antimony-rich targets the substrate temperature can be increased to at least 350°C while maintaining the skutterudite phase. In addition, adhesion properties of the films are explored in terms of the growth mode and substrate interaction. Finally, preliminary room temperature electrical and thermal measurements are reported.


Sign in / Sign up

Export Citation Format

Share Document