Synthesis and Selected Micro-Mechanical Properties of Titanium Nitride Thin Films by the Pyrolysis of Tetrakis Titanium in Ammonia.

1994 ◽  
Vol 363 ◽  
Author(s):  
Y. W. Bae ◽  
W. Y. Lee ◽  
T. M. Besmann ◽  
P. J. Blau ◽  
L. Riester

AbstractThin films of titanium nitride were chemical vapor deposited on (100)-oriented single-crystal silicon substrates from tetrakis (dimethylamino) titanium, Ti((CH3)2N)4, and ammonia gas mixtures in a cold-wall reactor at 623 K and 655 Pa. The films were characterized by Auger electron spectroscopy, X-ray diffraction, and transmission electron spectroscopy. The nano-scale hardness of the film, measured by nanoindentation, was 12.7±0.6 GPa. The average kinetic friction coefficient against unlubricated, type- 440C stainless steel was determined using a computer-controlled friction microprobe to be ∼0.43.

Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


2000 ◽  
Vol 637 ◽  
Author(s):  
F. Niu ◽  
A.R. Teren ◽  
B.H. Hoerman ◽  
B.W. Wessels

AbstractEpitaxial ferroelectric BaTiO3 thin films have been developed as a material for microphotonics. Efforts have been directed toward developing these materials for thin film electro-optic modulators. Films were deposited by metalorganic chemical vapor deposition (MOCVD) on both MgO and silicon substrates. The electro-optic properties of the thin films were measured. For BaTiO3 thin films grown on (100) MgO substrates, the effective electro-optic coefficient, reff depended on the magnitude and direction of the electric field. Coefficients as high as 260 pm/V have been measured. Investigation of BaTiO3 films on silicon has been undertaken. Epitaxial BaTiO3 thin films were deposited by MOCVD on (100) MgO layers grown on silicon (100) substrates by metal-organic molecular beam epitaxy (MOMBE). The MgO serves as the low index optical cladding layer as well as an insulating layer. X-ray diffraction and transmission electron microscopy (TEM) indicated that BaTiO3 was epitaxial with an orientational relation given by BaTiO3 (100)//Si (100) and BaTiO3[011]//Si [011]. Polarization measurements indicated that the BaTiO3 epitaxial films on Si were in the ferroelectric state.


1986 ◽  
Vol 71 ◽  
Author(s):  
L. M. Williams

AbstractThin films of titanium borides, deposited onto silicon substrates at 600 °C using plasma enhanced chemical vapor deposition, were annealed in a furnace at temperatures from 700 °(C to 990 °C. Structural properties and electronic properties were measured for the annealed films and the asdeposited films for comparison. Sheet resistances for the films show about a 35% decrease after anneals at 990 °(C. The reduction in sheet resistance appears to be relatively insensitive to the length of the anneal time. X-ray diffraction spectra of the as-deposited films show no peaks that are attributable to crystalline titanium borides; however, there are diffraction peaks that are believed to be caused by products from reactions between the titanium borides and the silicon substrate during deposition. There is evidence that crystalline titanium diboride may start to form during the anneal at 990 °C.


1997 ◽  
Vol 483 ◽  
Author(s):  
S. A. Ustin ◽  
C. Long ◽  
L. Lauhon ◽  
W. Ho

AbstractCubic SiC films have been grown on Si(001) and Si(111) substrates at temperatures between 600 °C and 900 °C with a single supersonic molecular beam source. Methylsilane (H3SiCH3) was used as the sole precursor with hydrogen and nitrogen as seeding gases. Optical reflectance was used to monitor in situ growth rate and macroscopic roughness. The growth rate of SiC was found to depend strongly on substrate orientation, methylsilane kinetic energy, and growth temperature. Growth rates were 1.5 to 2 times greater on Si(111) than on Si(001). The maximum growth rates achieved were 0.63 μm/hr on Si(111) and 0.375μm/hr on Si(001). Transmission electron diffraction (TED) and x-ray diffraction (XRD) were used for structural characterization. In-plane azimuthal (ø-) scans show that films on Si(001) have the correct 4-fold symmetry and that films on Si(111) have a 6-fold symmetry. The 6-fold symmetry indicates that stacking has occurred in two different sequences and double positioning boundaries have been formed. The minimum rocking curve width for SiC on Si(001) and Si(111) is 1.2°. Fourier Transform Infrared (FTIR) absorption was performed to discern the chemical bonding. Cross Sectional Transmission Electron Microscopy (XTEM) was used to image the SiC/Si interface.


1984 ◽  
Vol 35 ◽  
Author(s):  
J. O. Olowolafe ◽  
R. Fastow

ABSTRACTThin layers (~1,000 A ) of Ni and Co have been reacted with both (100) and amorphous silicon (a-Si) using a pulsed ion beam. Samples were analyzed using Rutherford backscattering, x-ray diffraction, and transmission electron microscopy. Rutherford backscattering showed that the metal/a-Si and metal/(100)-Si reaction rates were comparable. Both reactions began at the composition of the lowest eutectic. For comparison. furnace annealing of the same structures showed that the reaction rate of Ni with amorphous silicon was greater than with (100) Si; Co reacted nearly identically with both substrates. Diffraction data suggest that pulsed ion beam annealing crystallizes the amorphous silicon before the metal/a-Si reaction begins.


1991 ◽  
Vol 6 (6) ◽  
pp. 1278-1286 ◽  
Author(s):  
R. Ramesham ◽  
T. Roppel ◽  
C. Ellis ◽  
D.A. Jaworske ◽  
W. Baugh

Polycrystalline diamond thin films have been deposited on single crystal silicon substrates at low temperatures (⋚ 600 °C) using a mixture of hydrogen and methane gases by high pressure microwave plasma-assisted chemical vapor deposition. Low temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 °C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.


1992 ◽  
Vol 283 ◽  
Author(s):  
Sunwoo Lee ◽  
Thuong Ton ◽  
D. Zych ◽  
P. A. Dowben

ABSTRACTPlasma-enhanced chemical vapor deposited boron carbide (B1-xCx) thin films are shown to be a potential electronic material suitable for high temperature devices. The boron carbide films make excellent p-n heteroj unction diodes with /i-type silicon substrates. The B1-xCx/Si heteroj unction diodes are demonstrated to have rectifying properties at temperatures above 200°C and reverse current is strongly dependent on the energy of the band gap of the boron carbide films.


2007 ◽  
Vol 539-543 ◽  
pp. 1230-1235 ◽  
Author(s):  
Hyoun Woo Kim ◽  
S.H. Shim

We have synthesized the high-density Ga2O3 nanowires on gold (Au)-coated silicon substrates using metalorganic chemical vapor deposition. The nanowires exhibited one-dimensional structures having circular cross sections with diameters in the range of 30-200 nm. The energy dispersive x-ray spectroscopy revealed that the nanowires contained elements of Ga and O, without Au-related impurities. X-ray diffraction analysis and high-resolution transmission electron microscopy showed that the Ga2O3 nanowires were crystalline.


1990 ◽  
Vol 191 ◽  
Author(s):  
D. B. Fenner ◽  
D. K. Fork ◽  
G. A. N. Connell ◽  
J. B. Boyce ◽  
F. A. Ponce ◽  
...  

ABSTRACTThin epitaxial films of cubic - fluorite structured PrO2 and YSZ (yttria- stabilized zirconia) were grown on single crystal silicon substrates using the laser ablation - deposition technique. X-ray diffraction theta two - theta, omega rocking and phi scans indicate a high degree of epitaxial orientation of the films to the Si lattice. The highest quality of epitaxy was obtained with the PrO2 [111] oriented normal to Si(111) surfaces and the cubic YSZ [100] normal to Si(100) surfaces. For both PrO2 and YSZ, high epitaxial quality required the removal of the Si native oxide prior to deposition and careful control of the deposition environment. It was further found that the YSZ films on Si(100) were an excellent surface for subsequent laser ablation of YBCO films by the usual in situ process. The resistivity of this YBCO was ≈ 250 micro-ohm-cm at 300 K, extrapolated to the resistivity -temperature origin, showed a sharp transition to zero resistance at ≈ 85 K and was nearly identical to high quality YBCO films deposited on (bulk) YSZ substrates.


1997 ◽  
Vol 467 ◽  
Author(s):  
G. Viera ◽  
P. Roca i Cabarrocas ◽  
S. Hamma ◽  
S. N. Sharma ◽  
J. Costa ◽  
...  

ABSTRACTNanostructured silicon thin films have been deposited by plasma enhanced chemical vapor deposition at low substrate temperature (100 °C) in the presence of silicon nanoparticles. The nanostructure of the films was revealed by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, which showed ordered silicon domains (1–2 nm) embedded in an amorphous silicon matrix. These ordered domains are due to the particles created in the discharge that contribute to the film growth. One consequence of the incorporation of nanoparticles is the accelerated crystallization of the nanostructured silicon thin films when compared to standard a-Si:H, as shown by the electrical characterization during the annealing.


Sign in / Sign up

Export Citation Format

Share Document