High Resistivity Oxygen-Doped AlGaAs For Power Devices

1997 ◽  
Vol 483 ◽  
Author(s):  
Yuichj Sasajima ◽  
Noboru Fukuhara ◽  
Masahiko Hata ◽  
Takayoshi Maeda ◽  
Hideyo Okushi

AbstractWe have succeeded in making high resistive AlxGa1−xAs by oxygen doping (AlxGa1−xAs:O) and applying them to buffer layer for power metal-semiconductor field effect transistor (MESFET). Samples of Al0.3Ga0.7As:O were prepared by metalorganic vapor phase epitaxy (MOVPE). Oxygen-related levels in A10.3Ga0.7As:O were investigated by applying isothermal capacitance transient spectroscopy (107S) to MIS (Al/Al0.3Ga0.7As:O/n-GaAs) diodes. A breakdown voltage and a two terminal gate breakdown voltage of the MESFET with the Al0.3Ga0.7As:O buffer layer became higher as increasing in the intensity of oxygen related peak in the ICTS spectra. These results indicate that the electrically active oxygen in the Al1−xGa1−xAs:O is an important factor for the device characteristics.

2006 ◽  
Vol 955 ◽  
Author(s):  
Yuki Niiyama ◽  
Sadahiro Kato ◽  
Yoshihiro Sato ◽  
Masayuki Iwami ◽  
Jiang Li ◽  
...  

ABSTRACTWe investigated an AlGaN/GaN heterostructure field effect transistor (HFET) on Si substrates using a multi-wafer metalorganic vapor phase epitaxy (MOVPE) system. It was confirmed that a GaN film with smooth surface and without any crack was obtained. To increase a resistance of a GaN buffer layer, the carbon (C) -doping was carried out by controlling the V/III ratio and the growth pressure. The breakdown voltage of the buffer layer was dramatically improved by introducing the C. As a result, the breakdown voltage was about 900 V when the C concentration was about ∼8×1018 cm−3. After while, an AlGaN/GaN heterojunction FET (HFET) on a C-doped GaN buffer layer was fabricated. We achieved the breakdown voltage of over 1000 V and the maximum drain current of over 150 mA/mm, respectively. It was found that the C doped buffer layer is very effective for improving the breakdown voltage of AlGaN/GaN HFETs.


2021 ◽  
Vol 16 (5) ◽  
pp. 781-785
Author(s):  
Yoon-Young Huh ◽  
Jong-Mun Choi ◽  
Jung-Min Kim ◽  
Ey-Goo Kang ◽  
Hun-Suk Chung

Power metal oxide semiconductor field-effect transistor is a switching device designed to handle large power consumption; it enables fast switching, resulting in low power consumption. Power devices are used as important components that determine the operation and performance of electrically powered products such as home appliances, smartphones, and automobiles. Power devices must be able to block high voltage so that current does not flow in the off state, have no power consumption in the on state, and have a small resistance so that high current can flow. For high efficiency, power loss must be minimized and resistance must be reduced during the turn-on state. To increase the breakdown voltage, the thickness and resistivity of the N-drift region must be increased. However, owing to the trade-off relationship, as the breakdown voltage increases, the on-resistance also increases. The super junction structure was proposed to improve this trade-off relationship. In this study, a process simulation using TCAD tool was carried out. Similar to the multi-epitaxial process, the P-pillar was divided into several layers, and the value of each concentration was specified. Thus, the charge balance of the pillar regions was achieved. For the maximum breakdown voltage characteristics and minimum on-resistance characteristics of the deep-trench super junction MOSFET, an experiment was conducted to optimize the cell pitch and pillar of the super junction MOSFET using a five-deep trench.


1990 ◽  
Vol 67 (3) ◽  
pp. 1380-1383 ◽  
Author(s):  
Eun Kyu Kim ◽  
Hoon Young Cho ◽  
Suk‐Ki Min ◽  
Sung Ho Choh ◽  
Susumu Namba

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 573 ◽  
Author(s):  
Hujun Jia ◽  
Mei Hu ◽  
Shunwei Zhu

An improved ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (IUU-MESFET) is proposed in this paper. The structure is obtained by modifying the ultrahigh upper gate height h of the ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (UU-MESFET) structure, and the h is 0.1 μm and 0.2 μm for the IUU-MESFET and UU-MESFET, respectively. Compared with the UU-MESFET, the IUU-MESFET structure has a greater threshold voltage and trans-conductance, and smaller breakdown voltage and saturation drain current, and when the ultrahigh upper gate height h is 0.1 μm, the relationship between these parameters is balanced, so as to solve the contradictory relationship that these parameters cannot be improved simultaneously. Therefore, the power added efficiency (PAE) of the IUU-MESFET structure is increased from 60.16% to 70.99% compared with the UU-MESFET, and advanced by 18%.


Sign in / Sign up

Export Citation Format

Share Document