Fabrication of AlGaN/GaN HFET with a High Breakdown Voltage on 4-inch Si (111) Substrate by MOVPE

2006 ◽  
Vol 955 ◽  
Author(s):  
Yuki Niiyama ◽  
Sadahiro Kato ◽  
Yoshihiro Sato ◽  
Masayuki Iwami ◽  
Jiang Li ◽  
...  

ABSTRACTWe investigated an AlGaN/GaN heterostructure field effect transistor (HFET) on Si substrates using a multi-wafer metalorganic vapor phase epitaxy (MOVPE) system. It was confirmed that a GaN film with smooth surface and without any crack was obtained. To increase a resistance of a GaN buffer layer, the carbon (C) -doping was carried out by controlling the V/III ratio and the growth pressure. The breakdown voltage of the buffer layer was dramatically improved by introducing the C. As a result, the breakdown voltage was about 900 V when the C concentration was about ∼8×1018 cm−3. After while, an AlGaN/GaN heterojunction FET (HFET) on a C-doped GaN buffer layer was fabricated. We achieved the breakdown voltage of over 1000 V and the maximum drain current of over 150 mA/mm, respectively. It was found that the C doped buffer layer is very effective for improving the breakdown voltage of AlGaN/GaN HFETs.

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 573 ◽  
Author(s):  
Hujun Jia ◽  
Mei Hu ◽  
Shunwei Zhu

An improved ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (IUU-MESFET) is proposed in this paper. The structure is obtained by modifying the ultrahigh upper gate height h of the ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (UU-MESFET) structure, and the h is 0.1 μm and 0.2 μm for the IUU-MESFET and UU-MESFET, respectively. Compared with the UU-MESFET, the IUU-MESFET structure has a greater threshold voltage and trans-conductance, and smaller breakdown voltage and saturation drain current, and when the ultrahigh upper gate height h is 0.1 μm, the relationship between these parameters is balanced, so as to solve the contradictory relationship that these parameters cannot be improved simultaneously. Therefore, the power added efficiency (PAE) of the IUU-MESFET structure is increased from 60.16% to 70.99% compared with the UU-MESFET, and advanced by 18%.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Jae-Hoon Lee ◽  
Jung-Hee Lee

A crack-free AlGaN/GaN heterostructure was grown on 4-inch Si (111) substrate with initial dot-like AlSiC precoverage layer. It is believed that introducing the AlSiC layer between AlN wetting layer and Si substrate is more effective in obtaining a compressively stressed film growth than conventional Al precoverage on Si surface. The metal semiconductor field effect transistor (MESFET), fabricated on the AlGaN/GaN heterostructure grown with the AlSiC layer, exhibited normally on characteristics, such as threshold voltage of −2.3 V, maximum drain current of 370 mA/mm, and transconductance of 124 mS/mm.


1999 ◽  
Vol 574 ◽  
Author(s):  
Norifumi Fujimura ◽  
Takeshi Yoshimura ◽  
Daisuke Ito ◽  
Taichiro Ito

AbstractWe have been proposing the use of RMnO3 (R: rare earth elements) films for metalferroelectric- semiconductor field effect transistor (MFSFET)-type ferroelectric random access memories (Ferroelectric RAMs). This report describes the progress of YMnO3 and YbMnO3 films for FET type FeRAM application. Although highly (0001)-oriented YMnO3 films are easily obtained on a MgO, ZnO/Sapphire, Pt/Sapphire and Pt/Si substrates, it was very hard to obtain the crystalline films directly on Si or on SiO2/Si substrate. A Y-Mn-O buffer layer improved the crystallinity of the YMnO3 films on Si, and we got the C-V curve with ferroelectric hysteresis. The real ferroelectric component responsible for the C-V hysteresis was calculated to be just 8.4 nC/cm2 by pulse measurements. On the other hand, Y2O3 buffer layer drastically improved the dielectric properties. The window width of the C-V hysteresis does not change by changing the sweep rate and measurement frequency.


2010 ◽  
Vol 53 (9) ◽  
pp. 1578-1581 ◽  
Author(s):  
Yong Wang ◽  
NaiSen Yu ◽  
DongMei Deng ◽  
Ming Li ◽  
Fei Sun ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 1337-1340
Author(s):  
Young Hwan Choi ◽  
Ji Yong Lim ◽  
Kyu Heon Cho ◽  
In Hwan Ji ◽  
Min Koo Han

The effect of ohmic contact location on the buffer leakage current of AlGaN/GaN heterostructure was investigated and the AlGaN/GaN HEMT employing the proposed ohmic contact pattern was fabricated. We have fabricated 3 different types of ohmic patterns; type A - both contacts are on the etched GaN buffer layer, type B - one is on the etched GaN buffer layer and the other is on the unetched GaN cap layer and type C - both contacts are on the unetched GaN cap layer. Our experimental results showed that the ohmic contact on GaN buffer increased the buffer leakage current due to the lateral diffusion of ohmic metals. The proposed AlGaN/GaN HEMT successfully decreased the leakage current and did not affect the forward drain current and the transconductance.


1997 ◽  
Vol 483 ◽  
Author(s):  
Yuichj Sasajima ◽  
Noboru Fukuhara ◽  
Masahiko Hata ◽  
Takayoshi Maeda ◽  
Hideyo Okushi

AbstractWe have succeeded in making high resistive AlxGa1−xAs by oxygen doping (AlxGa1−xAs:O) and applying them to buffer layer for power metal-semiconductor field effect transistor (MESFET). Samples of Al0.3Ga0.7As:O were prepared by metalorganic vapor phase epitaxy (MOVPE). Oxygen-related levels in A10.3Ga0.7As:O were investigated by applying isothermal capacitance transient spectroscopy (107S) to MIS (Al/Al0.3Ga0.7As:O/n-GaAs) diodes. A breakdown voltage and a two terminal gate breakdown voltage of the MESFET with the Al0.3Ga0.7As:O buffer layer became higher as increasing in the intensity of oxygen related peak in the ICTS spectra. These results indicate that the electrically active oxygen in the Al1−xGa1−xAs:O is an important factor for the device characteristics.


2002 ◽  
Vol 122 (1) ◽  
pp. 23-28
Author(s):  
Hiroyuki Masato ◽  
Yoshito Ikeda ◽  
Toshinobu Matsuno ◽  
Katsunori Nishii ◽  
Kaoru Inoue

Sign in / Sign up

Export Citation Format

Share Document