Viscoelasticity and its Microscopic Characterization in Semiflexible Biopolymer Solutions

1997 ◽  
Vol 489 ◽  
Author(s):  
F. C. Mackintosh ◽  
F. Gittes ◽  
B. Schnurr ◽  
P. D. Olmsted ◽  
C. F. Schmidt

AbstractPlant and animal cells contain a complex polymeric network known as the cytoskeleton. A principal component of this is the actin cortex, a gel-like network of F-actin protein filaments. Recently, solutions of reconstituted F-actin have provided in vitro models of the actin cortex, as well as excellent model systems in which to study semiflexible polymers. We describe models of viscoelasticity in semifexible polymers, and report theoretical and experimental results for thermal fluctuations of embedded particles, which act as local viscoelastic probes of soft materials such as biopolymer solutions. Specifically, we report high-frequency scaling behavior of the shear modulus, as the 3/4 power of frequency, in contrast with the behavior of flexible polymer systems.

2019 ◽  
Vol 116 (26) ◽  
pp. 12629-12637 ◽  
Author(s):  
Patrick M. McCall ◽  
Frederick C. MacKintosh ◽  
David R. Kovar ◽  
Margaret L. Gardel

The shape of most animal cells is controlled by the actin cortex, a thin network of dynamic actin filaments (F-actin) situated just beneath the plasma membrane. The cortex is held far from equilibrium by both active stresses and polymer turnover: Molecular motors drive deformations required for cell morphogenesis, while actin-filament disassembly dynamics relax stress and facilitate cortical remodeling. While many aspects of actin-cortex mechanics are well characterized, a mechanistic understanding of how nonequilibrium actin turnover contributes to stress relaxation is still lacking. To address this, we developed a reconstituted in vitro system of entangled F-actin, wherein the steady-state length and turnover rate of F-actin are controlled by the actin regulatory proteins cofilin, profilin, and formin, which sever, recycle, and assemble filaments, respectively. Cofilin-mediated severing accelerates the turnover and spatial reorganization of F-actin, without significant changes to filament length. We demonstrate that cofilin-mediated severing is a single-timescale mode of stress relaxation that tunes the low-frequency viscosity over two orders of magnitude. These findings serve as the foundation for understanding the mechanics of more physiological F-actin networks with turnover and inform an updated microscopic model of single-filament turnover. They also demonstrate that polymer activity, in the form of ATP hydrolysis on F-actin coupled to nucleotide-dependent cofilin binding, is sufficient to generate a form of active matter wherein asymmetric filament disassembly preserves filament number despite sustained severing.


2019 ◽  
Vol 97 (11) ◽  
pp. 4509-4518
Author(s):  
John L Vicini ◽  
William R Reeves ◽  
John T Swarthout ◽  
Katherine A Karberg

Abstract Glyphosate is a nonselective systemic herbicide used in agriculture since 1974. It inhibits 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, an enzyme in the shikimate pathway present in cells of plants and some microorganisms but not human or other animal cells. Glyphosate-tolerant crops have been commercialized for more than 20 yr using a transgene from a resistant bacterial EPSP synthase that renders the crops insensitive to glyphosate. Much of the forage or grain from these crops are consumed by farm animals. Glyphosate protects crop yields, lowers the cost of feed production, and reduces CO2 emissions attributable to agriculture by reducing tillage and fuel usage. Despite these benefits and even though global regulatory agencies continue to reaffirm its safety, the public hears conflicting information about glyphosate's safety. The U.S. Environmental Protection Agency determines for every agricultural chemical a maximum daily allowable human exposure (called the reference dose, RfD). The RfD is based on amounts that are 1/100th (for sensitive populations) to 1/1,000th (for children) the no observed adverse effects level (NOAEL) identified through a comprehensive battery of animal toxicology studies. Recent surveys for residues have indicated that amounts of glyphosate in food/feed are at or below established tolerances and actual intakes for humans or livestock are much lower than these conservative exposure limits. While the EPSP synthase of some bacteria is sensitive to glyphosate, in vivo or in vitro dynamic culture systems with mixed bacteria and media that resembles rumen digesta have not demonstrated an impact on microbial function from adding glyphosate. Moreover, one chemical characteristic of glyphosate cited as a reason for concern is that it is a tridentate chelating ligand for divalent and trivalent metals; however, other more potent chelators are ubiquitous in livestock diets, such as certain amino acids. Regulatory testing identifies potential hazards, but risks of these hazards need to be evaluated in the context of realistic exposures and conditions. Conclusions about safety should be based on empirical results within the limitations of model systems or experimental design. This review summarizes how pesticide residues, particularly glyphosate, in food and feed are quantified, and how their safety is determined by regulatory agencies to establish safe use levels.


2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 394-394
Author(s):  
Dominic E. Sanford ◽  
Andrew Giorgi ◽  
Brian D. Goetz ◽  
Roheena Z. Panni ◽  
William G. Hawkins ◽  
...  

394 Background: Tumors are composed of heterogeneous cell populations, some of which demonstrate enhanced tumor-forming capabilities (so-called tumor initiating cells [TIC] or cancer stem cells). In colorectal cancer (CRC), CD133, 44, and 24 are cell surface markers that identify TIC. Therefore, we sought to determine if CRC liver metastases (CRC-LM) form xenografts (in vivo) and cell cultures (in vitro) with TIC markers. Methods: CRC-LM were grafted in NOD/SCID mice and passaged serially. Xenografts were mechanically dissociated and cultured under sphere forming conditions. Flow cytometry was performed for TIC phenotype. Results: 16 of 18 (89%) CRC-LM specimens formed tumors in mice. Xenografts formed EpCAM+ tumors and spheres. The frequency of CD133+, CD44+, and CD133+/CD44+ tumor cells were 55%, 33%, and 23%, respectively. There was a subpopulation of CD133+/CD44+ cells with elevated CD44 expression(CD44hi). This CD133+/CD44hi population was also CD24+; representing 5% of cells. Eight of eleven (73%) xenografts formed spheres in vitro. The frequency of CD133+, CD44+, and CD133+/CD44+ cells were 63%, 47%, and 26%, respectively. CD133+/CD44+/CD24+ cells made up 8% of sphere-forming cells. There was a non-significant trend towards increased frequency of CD133+, CD44+, and CD133/CD44 positive cells in the spheres compared to the xenografts. However, the percentage of CD133+/CD44+/CD24+ cells was significantly increased in spheres relative to xenografts (8% vs. 5%, respectively; p<0.05) (see Table). Conclusions: CRC-LM derived xenografts and spheres are composed of distinct cell populations with differing levels of TIC/cancer stem cells. Sphere cultures may enhance for the most enriched TIC population. Thus, xenografts and sphere cultures are important model systems to further study the importance of cancer stem cells in CRC progression and metastases. [Table: see text]


2020 ◽  
Vol 117 (27) ◽  
pp. 15763-15771 ◽  
Author(s):  
Andrew Timmons ◽  
Emily Fray ◽  
Mithra Kumar ◽  
Fengting Wu ◽  
Weiwei Dai ◽  
...  

HIV-1 latency is a major barrier to cure. Identification of small molecules that destabilize latency and allow immune clearance of infected cells could lead to treatment-free remission. In vitro models of HIV-1 latency involving cell lines or primary cells have been developed for characterization of HIV-1 latency and high-throughput screening for latency-reversing agents (LRAs). We have shown that the majority of LRAs identified to date are relatively ineffective in cells from infected individuals despite activity in model systems. We show here that, for diverse LRAs, latency reversal observed in model systems involves a heat shock factor 1 (HSF1)-mediated stress pathway. Small-molecule inhibition of HSF1 attenuated HIV-1 latency reversal by histone deactylase inhibitors, protein kinase C agonists, and proteasome inhibitors without interfering with the known mechanism of action of these LRAs. However, latency reversal by second mitochondria-derived activator of caspase (SMAC) mimetics was not affected by inhibition of HSF1. In cells from infected individuals, inhibition of HSF1 attenuated latency reversal by phorbol ester+ionomycin but not by anti-CD3+anti-CD28. HSF1 promotes elongation of HIV-1 RNA by recruiting P-TEFb to the HIV-1 long terminal repeat (LTR), and we show that inhibition of HSF1 attenuates the formation of elongated HIV-1 transcripts. We demonstrate that in vitro models of latency have higher levels of the P-TEFb subunit cyclin T1 than primary cells, which may explain why many LRAs are functional in model systems but relatively ineffective in primary cells. Together, these studies provide insights into why particular LRA combinations are effective in reversing latency in cells from infected individuals.


2021 ◽  
Author(s):  
Quinton Smith ◽  
Christopher S Chen ◽  
Sangeeta N. Bhatia

Patients with Alagille syndrome carry monogenic mutations in the Notch signaling pathway and face complications such as jaundice and cholestasis. Given the presence of intrahepatic ductopenia in these patients, Notch2 receptor signaling has been implicated in driving normal biliary development and downstream branching morphogenesis. As a result, in vitro model systems of liver epithelium are needed to further mechanistic insight of biliary tissue assembly. Here, we systematically evaluate primary human intrahepatic cholangiocytes as a candidate population for such a platform, and describe conditions that direct their branching morphogenesis. We find that extracellular matrix presentation, coupled with mitogen stimulation, promotes biliary branching in a Notch-dependent manner. These results demonstrate the utility of using 3D scaffolds for mechanistic investigation of cholangiocyte branching and provides a gateway to integrate biliary architecture in additional in vitro models of liver tissue.


2018 ◽  
Vol 19 (9) ◽  
pp. 2788 ◽  
Author(s):  
Guang Yang ◽  
Hyenjong Hong ◽  
April Torres ◽  
Kristen Malloy ◽  
Gourav Choudhury ◽  
...  

Humans and nonhuman primates (NHP) are similar in behavior and in physiology, specifically the structure, function, and complexity of the immune system. Thus, NHP models are desirable for pathophysiology and pharmacology/toxicology studies. Furthermore, NHP-derived induced pluripotent stem cells (iPSCs) may enable transformative developmental, translational, or evolutionary studies in a field of inquiry currently hampered by the limited availability of research specimens. NHP-iPSCs may address specific questions that can be studied back and forth between in vitro cellular assays and in vivo experimentations, an investigational process that in most cases cannot be performed on humans because of safety and ethical issues. The use of NHP model systems and cell specific in vitro models is evolving with iPSC-based three-dimensional (3D) cell culture systems and organoids, which may offer reliable in vitro models and reduce the number of animals used in experimental research. IPSCs have the potential to give rise to defined cell types of any organ of the body. However, standards for deriving defined and validated NHP iPSCs are missing. Standards for deriving high-quality iPSC cell lines promote rigorous and replicable scientific research and likewise, validated cell lines reduce variability and discrepancies in results between laboratories. We have derived and validated NHP iPSC lines by confirming their pluripotency and propensity to differentiate into all three germ layers (ectoderm, mesoderm, and endoderm) according to standards and measurable limits for a set of marker genes. The iPSC lines were characterized for their potential to generate neural stem cells and to differentiate into dopaminergic neurons. These iPSC lines are available to the scientific community. NHP-iPSCs fulfill a unique niche in comparative genomics to understand gene regulatory principles underlying emergence of human traits, in infectious disease pathogenesis, in vaccine development, and in immunological barriers in regenerative medicine.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi218-vi219
Author(s):  
Steven Markwell ◽  
Cheryl Olson ◽  
James Ross ◽  
Daniel Brat

Abstract Emerging necrosis within solid tumors corresponds with malignant progression. Current tumor model systems fail to adequately mimic the magnitude of post-necrotic restructuring within the microenvironment and remain overly reliant on post-mortem and descriptive analyses, obligating researchers to extrapolate causal relationships between necrosis and progression phenomena that emerge during tumor evolution. In glioblastoma (GBM; WHO grade 4), the most malignant primary brain tumor, vascular pathology and central necrosis precede rapid, radial expansion. Despite extensive genetic characterization in GBM, mechanisms enabling selective fitness within a hypoxic/anoxic setting remain poorly understood. Persistent nutrient deprivation culminates in necrosis, dramatically altering the tumor microenvironment (TME). We established mouse models that more aptly capture events found in human gliomas, exposing the dynamic temporal and spatial changes that facilitate expansive progression while including unique microenvironmental stressors typically absent from GBM animal models, specifically central necrosis. This model combines hypoxia-induced focal necrosis within GBM with real time intravital microscopy to capture TME restructuring and elucidate its impact on glioma progression. Our studies use genetically characterized patient-derived orthotopic GBM xenografts, alongside an immunocompetent RCAS/tv-a model, to determine how these processes impact disease progression and outcomes across multiple GBM molecular subtypes. Simultaneously, we employ in vitro models to scrutinize how hypoxia-related crosstalk between GBM, microglia and circulating monocytes alter tumor-associated macrophage (TAMs) recruitment and reprogramming. Our preliminary data suggests microenvironmental cues significantly alter microglia behavior and have demonstrated increased 3D invasion under hypoxic conditions as compared to normoxia. Monocyte invasion varies based on signals emanating from specific GBM subtypes, yet the signaling events that elicit differential responses remains unknown. However, exposure to any GBM conditioned media uniformly upregulates immunosuppressive TAM programming. Our ongoing investigations seek to uncover the mechanisms driving post-necrotic GBM evolution and reactive neuroinflammation


2018 ◽  
Vol 315 (2) ◽  
pp. F332-F335 ◽  
Author(s):  
Eryn E. Dixon ◽  
Owen M. Woodward

Novel technologies, new understanding of the basement membrane composition, and better comprehension of the embryonic development of the mammalian kidney have led to explosive growth in the use of three-dimensional in vitro models to study a range of human disease pathologies (Clevers H. Cell 165: 1586–1597, 2016; Shamir ER, Ewald AJ. Nat Rev Mol Cell Biol 15: 647–664, 2014). The development of these effective model systems represents a new tool to study the progressive cystogenesis of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is a prevalent and complex monogenetic disease, characterized by the pathological formation of fluid fill cysts in renal tissue (Grantham JJ, Mulamalla S, Swenson-Fields KI. Nat Rev Nephrol 7: 556–566, 2011; Takiar V, Caplan MJ. Biochim Biophys Acta 1812: 1337–1343, 2011). ADPKD cystogenesis is attributed to loss of function mutations in either PKD1 or PKD2, which encode for two transmembrane proteins, polycystin-1 and polycystin-2, and progresses with loss of both copies of either gene through a proposed two-hit mechanism with secondary somatic mutations (Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Biochem Biophys Res Commun 322: 1374–1383, 2004; Pei Y, Watnick T, He N, Wang K, Liang Y, Parfrey P, Germino G, St George-Hyslop P. Am Soc Nephrol 10: 1524–1529, 1999; Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S. Cell 93: 177–188, 1998). The exaggerated consequences of large fluid filled cysts result in fibrosis and nephron injury, leading initially to functional compensation but ultimately to dysfunction (Grantham JJ. Am J Kidney Dis 28: 788–803, 1996; Norman J. Biochim Biophys Acta 1812: 1327–1336, 2011; Song CJ, Zimmerman KA, Henke SJ, Yoder BK. Results Probl Cell Differ 60: 323–344, 2017). The complicated disease progression has scattered focus and resources across the spectrum of ADPKD research.


Brain ◽  
2020 ◽  
Vol 143 (11) ◽  
pp. 3181-3213 ◽  
Author(s):  
Polyxeni Nikolakopoulou ◽  
Rossana Rauti ◽  
Dimitrios Voulgaris ◽  
Iftach Shlomy ◽  
Ben M Maoz ◽  
...  

Abstract The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. ‘organ-on-a-chip’ systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.


2020 ◽  
Vol 21 (21) ◽  
pp. 7916 ◽  
Author(s):  
Alexandra Damerau ◽  
Timo Gaber

Rheumatoid arthritis (RA) is a chronic, inflammatory, and systemic autoimmune disease that affects the connective tissue and primarily the joints. If not treated, RA ultimately leads to progressive cartilage and bone degeneration. The etiology of the pathogenesis of RA is unknown, demonstrating heterogeneity in its clinical presentation, and is associated with autoantibodies directed against modified self-epitopes. Although many models already exist for RA for preclinical research, many current model systems of arthritis have limited predictive value because they are either based on animals of phylogenetically distant origin or suffer from overly simplified in vitro culture conditions. These limitations pose considerable challenges for preclinical research and therefore clinical translation. Thus, a sophisticated experimental human-based in vitro approach mimicking RA is essential to (i) investigate key mechanisms in the pathogenesis of human RA, (ii) identify targets for new therapeutic approaches, (iii) test these approaches, (iv) facilitate the clinical transferability of results, and (v) reduce the use of laboratory animals. Here, we summarize the most commonly used in vitro models of RA and discuss their experimental feasibility and physiological proximity to the pathophysiology of human RA to highlight new human-based avenues in RA research to increase our knowledge on human pathophysiology and develop effective targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document