Vanadium Oxide Precipitates in Sapphire Formed by Ion Implantation

1997 ◽  
Vol 504 ◽  
Author(s):  
Hiroaki Abe ◽  
Hiroshi Naramoto ◽  
Shunya Yamamoto

ABSTRACTSome vanadium oxides undergo phase transformations which give rise to attributable for large variations in optical and electronic properties. Since one can expect dynamic rearrangement of implanted species and a distorted lattice due to implantation, we investigated the precipitation process under ion implantation at high temperature. Sapphire samples were implanted with 300-keV V+ ions at temperatures from 470 to 1070 K in a transmission electron microscope interfaced with ion accelerators. Evolution of vanadium oxide precipitates was observed simultaneously. Damage evolution such as dislocation loops and voids were observed at fluences of the order of 1018-1019 and 1020 ions/m2, respectively. At implantation fluence of the order of 1021 ions/m2, dot and plate contrast was observed in addition to radiation damage. Electron diffraction analysis reveals that hexagonal and monoclinic V2O3, tetragonal and monoclinic VO2, and V7O13 precipitates were formed in the substrate depending on the surface normal of the substrate. Some of precipitates were thermally unstable phases. Crystallographic relationship between matrix and the precipitates was investigated as well as the swelling effect both in the substrate and in the precipitates. Temperature dependence reveals precipitation starts at temperature higher than 670 K.


1991 ◽  
Vol 238 ◽  
Author(s):  
H. L. Meng ◽  
K. S. Jones ◽  
S. Prussin

ABSTRACTIon implantation and thermal oxidation are device fabrication processes that lead to perturbation of equilibrium point defects concentration in silicon. This study investigates the interaction between oxidation-induced point defects and type II dislocation loops intentionally introduced in silicon via ion implantation. The type II dislocation loops were introduced via Si implants into (100) Si wafers at 50 keV to a dose ranging from 2×1015 to 1×1016/cm2. The subsequent furnace annealing at 900 °C was done for times between 30 min and 4 hr in either a dry oxygen or nitrogen ambient. Plan-view transmission electron microscopy (PTEM) was used to characterize the increase in atom concentration bound by dislocation loops as a result of oxidation. The results show type II dislocation loops can be used as point defect detector and they are efficient in measuring oxidation-induced point defects. It is also shown that the measured net interstitials flux trapped by dislocation loops is linearly proportional to the total supersaturation of interstitials as measured by oxidation enhanced diffusion (OED) studies.



Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.



Author(s):  
Robert C. Rau ◽  
John Moteff

Transmission electron microscopy has been used to study the thermal annealing of radiation induced defect clusters in polycrystalline tungsten. Specimens were taken from cylindrical tensile bars which had been irradiated to a fast (E > 1 MeV) neutron fluence of 4.2 × 1019 n/cm2 at 70°C, annealed for one hour at various temperatures in argon, and tensile tested at 240°C in helium. Foils from both the unstressed button heads and the reduced areas near the fracture were examined.Figure 1 shows typical microstructures in button head foils. In the unannealed condition, Fig. 1(a), a dispersion of fine dot clusters was present. Annealing at 435°C, Fig. 1(b), produced an apparent slight decrease in cluster concentration, but annealing at 740°C, Fig. 1(C), resulted in a noticeable densification of the clusters. Finally, annealing at 900°C and 1040°C, Figs. 1(d) and (e), caused a definite decrease in cluster concentration and led to the formation of resolvable dislocation loops.



Author(s):  
E.G. Bithell ◽  
W.M. Stobbs

It is well known that the microstructural consequences of the ion implantation of semiconductor heterostructures can be severe: amorphisation of the damaged region is possible, and layer intermixing can result both from the original damage process and from the enhancement of the diffusion coefficients for the constituents of the original composition profile. A very large number of variables are involved (the atomic mass of the target, the mass and energy of the implant species, the flux and the total dose, the substrate temperature etc.) so that experimental data are needed despite the existence of relatively well developed models for the implantation process. A major difficulty is that conventional techniques (e.g. electron energy loss spectroscopy) have inadequate resolution for the quantification of any changes in the composition profile of fine scale multilayers. However we have demonstrated that the measurement of 002 dark field intensities in transmission electron microscope images of GaAs / AlxGa1_xAs heterostructures can allow the measurement of the local Al / Ga ratio.



Author(s):  
J. J. Hren ◽  
W. D. Cooper ◽  
L. J. Sykes

Small dislocation loops observed by transmission electron microscopy exhibit a characteristic black-white strain contrast when observed under dynamical imaging conditions. In many cases, the topography and orientation of the image may be used to determine the nature of the loop crystallography. Two distinct but somewhat overlapping procedures have been developed for the contrast analysis and identification of small dislocation loops. One group of investigators has emphasized the use of the topography of the image as the principle tool for analysis. The major premise of this method is that the characteristic details of the image topography are dependent only on the magnitude of the dot product between the loop Burgers vector and the diffracting vector. This technique is commonly referred to as the (g•b) analysis. A second group of investigators has emphasized the use of the orientation of the direction of black-white contrast as the primary means of analysis.



Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.



Author(s):  
Byung-Teak Lee

Grown-in dislocations in GaAs have been a major obstacle in utilizing this material for the potential electronic devices. Although it has been proposed in many reports that supersaturation of point defects can generate dislocation loops in growing crystals and can be a main formation mechanism of grown-in dislocations, there are very few reports on either the observation or the structural analysis of the stoichiometry-generated loops. In this work, dislocation loops in an arsenic-rich GaAs crystal have been studied by transmission electron microscopy.The single crystal with high arsenic concentration was grown using the Horizontal Bridgman method. The arsenic source temperature during the crystal growth was about 630°C whereas 617±1°C is normally believed to be optimum one to grow a stoichiometric compound. Samples with various orientations were prepared either by chemical thinning or ion milling and examined in both a JEOL JEM 200CX and a Siemens Elmiskop 102.



Author(s):  
A. De Veirman ◽  
J. Van Landuyt ◽  
K.J. Reeson ◽  
R. Gwilliam ◽  
C. Jeynes ◽  
...  

In analogy to the formation of SIMOX (Separation by IMplanted OXygen) material which is presently the most promising silicon-on-insulator technology, high-dose ion implantation of cobalt in silicon is used to synthesise buried CoSi2 layers. So far, for high-dose ion implantation of Co in Si, only formation of CoSi2 is reported. In this paper it will be shown that CoSi inclusions occur when the stoichiometric Co concentration is exceeded at the peak of the Co distribution. 350 keV Co+ ions are implanted into (001) Si wafers to doses of 2, 4 and 7×l017 per cm2. During the implantation the wafer is kept at ≈ 550°C, using beam heating. The subsequent annealing treatment was performed in a conventional nitrogen flow furnace at 1000°C for 5 to 30 minutes (FA) or in a dual graphite strip annealer where isochronal 5s anneals at temperatures between 800°C and 1200°C (RTA) were performed. The implanted samples have been studied by means of Rutherford Backscattering Spectroscopy (RBS) and cross-section Transmission Electron Microscopy (XTEM).



Sign in / Sign up

Export Citation Format

Share Document