Study of the thermal properties of polymeric dielectric materials by photothermal technique

1998 ◽  
Vol 511 ◽  
Author(s):  
Chuan Hu ◽  
Ennis T. Ogawa ◽  
Michael F. Hay ◽  
Paul S. Ho

ABSTRACTIn this paper, we present some results of the newly developed on-wafer photothermal measurement. To study thermal anisotropy, the out-of-plane thermal diffusivity measured from this technique is compared with the in-plane thermal diffusivity by measured by ISTS [1]. In addition to the thermal properties, the agreement with mechanical [2] and optical properties are also shown. The significance of different thermal performance between low K dielectric medium materials and SiO2 suggests that greater attention should be paid to thermal properties for integrated devices with low K materials.

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 849 ◽  
Author(s):  
Peng Xu ◽  
Zhongliang Pan ◽  
Zhenhua Tang

The ultra-low-k dielectric material replacing the conventional SiO2 dielectric medium in coupled multilayer graphene nanoribbon (MLGNR) interconnects is presented. An equivalent distributed transmission line model of coupled MLGNR interconnects is established to derive the analytical expressions of crosstalk delay, transfer gain, and noise output for 7.5 nm technology node at global level, which take the in-phase and out-of-phase crosstalk into account. The results show that by replacing the SiO2 dielectric mediums with the nanoglass, the maximum reduction of delay time and peak noise voltage are 25.202 ns and 0.102 V for an interconnect length of 3000 µm, respectively. It is demonstrated that the ultra-low-k dielectric materials can significantly reduce delay time and crosstalk noise and increase transfer gain compared with the conventional SiO2 dielectric medium. Moreover, it is found that the coupled MLGNR interconnect under out-of-phase mode has a larger crosstalk delay and a lesser transfer gain than that under in-phase mode, and the peak noise voltage increases with the increase of the coupled MLGNR interconnect length. The results presented in this paper would be useful to aid in the enhancement of performance of on-chip interconnects and provide guidelines for signal characteristic analysis of MLGNR interconnects.


2004 ◽  
Vol 812 ◽  
Author(s):  
A.A. Maznev ◽  
A. Mazurenko ◽  
G. Alper ◽  
C.J.L. Moore ◽  
M. Gostein ◽  
...  

AbstractA non-contact optical technique based on laser-generated surface acoustic waves (SAWs) was used to characterize elastic properties of two types of thin (150-1100 nm) low-k films: more traditional non-porous organosilicate glass PECVD films (k=3.0) and novel mesoporous silica films fabricated in supercritical CO2 (k=2.2). The acoustic response of the non-porous samples is well described by a model of an elastically isotropic material with two elastic constants, Young's modulus and Poisson's ratio. Both parameters can be determined by analyzing SAW dispersion curves. However, the isotropic model fails to describe the SAW dispersion in the mesoporous samples. Modifying the model to allow a difference between in-plane and out-of plane properties (i.e., a transversely isotropic material) results in good agreement between the measurements and the model. The in-plane compressional modulus is found to be 2-3 times larger than the out-of plane modulus, possibly due to the anisotropic shape of the pores. Elastic anisotropy should therefore be taken into account in modeling mechanical behavior of low-k materials.


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2349
Author(s):  
Alain Salvador Conejo-Dávila ◽  
Marco Armando Moya-Quevedo ◽  
David Chávez-Flores ◽  
Alejandro Vega-Rios ◽  
Erasto Armando Zaragoza-Contreras

The development of anilinium 2-acrylamide-2-methyl-1-propanesulfonate (Ani-AMPS) monomer, confirmed by 1H NMR, 13C NMR, and FTIR, is systematically studied. Ani-AMPS contains two polymerizable functional groups, so it was submitted to selective polymerization either by free-radical or oxidative polymerization. Therefore, poly(anilinium 2-acrylamide-2-methyl-1-propanesulfonic) [Poly(Ani-AMPS)] and polyaniline doped with 2-acrylamide-2-methyl-1-propanesulfonic acid [PAni-AMPS] can be obtained. First, the acrylamide polymer, poly(Ani-AMPS), favored the π-stacking of the anilinium group produced by the inter- and intra-molecular interactions and was studied utilizing 1H NMR, 13C NMR, FTIR, and UV-Vis-NIR. Furthermore, poly(Ani-AMPS) fluorescence shows quenching in the presence of Fe2+ and Fe3+ in the emission spectrum at 347 nm. In contrast, the typical behavior of polyaniline is observed in the cyclic voltammetry analysis for PAni-AMPS. The optical properties also show a significant change at pH 4.4. The PAni-AMPS structure was corroborated through FTIR, while the thermal properties and morphology were analyzed utilizing TGA, DSC (except PAni-AMPS), and FESEM.


2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.


Author(s):  
V. N. Kruchinin ◽  
V. A. Volodin ◽  
S. V. Rykhlitskii ◽  
V. A. Gritsenko ◽  
I. P. Posvirin ◽  
...  

2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 894 ◽  
Author(s):  
Hongjiao Lin ◽  
Hejun Li ◽  
Qingliang Shen ◽  
Xiaohong Shi ◽  
Tao Feng ◽  
...  

An in-situ, catalyst-free method for synthesizing 3C-SiC ceramic nanowires (SiCNWs) inside carbon–carbon (C/C) composites was successfully achieved. Obtained samples in different stages were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman scattering spectroscopy. Results demonstrated that the combination of sol-gel impregnation and carbothermal reduction was an efficient method for in-situ SiCNW synthesis, inside C/C composites. Thermal properties and mechanical behaviors—including out-of-plane and in-plane compressive strengths, as well as interlaminar shear strength (ILLS) of SiCNW modified C/C composites—were investigated. By introducing SiCNWs, the initial oxidation temperature of C/C was increased remarkably. Meanwhile, out-of-plane and in-plane compressive strengths, as well as interlaminar shear strength (ILLS) of C/C composites were increased by 249.3%, 109.2%, and 190.0%, respectively. This significant improvement resulted from simultaneous reinforcement between the fiber/matrix (F/M) and matrix/matrix (M/M) interfaces, based on analysis of the fracture mechanism.


Sign in / Sign up

Export Citation Format

Share Document