Studies On The Intermetallic Semiconductor RuAl2

1998 ◽  
Vol 512 ◽  
Author(s):  
V. Ponnambalam ◽  
U. V. Varadaraju

ABSTRACTThe intermetallic compound RuAl2 with Nowotny chimney-ladder structure is synthesized using arc melting technique. The electrical resistity and thermo electric power measurements were carried out in the temperature range 300–1000K. The resistivity increases with increasing temperature and reaches a maximum value at about 700K. Thermo electric power (TEP) of the sample is negative and the value is about -80 µV/K at RT. The value increases with increasing temperature reaching a maximum value of -140 µV/K at about 600K. The compound exhibits temperature independent power factor in the temperature range 300–550K The calculated figure of merit 1.3 × K-1 is comparable to 7 × 10-4 K-1 of Si-Ge alloys which are used as high temperature thermoelectric materials.

1951 ◽  
Vol 29 (3) ◽  
pp. 243-252 ◽  
Author(s):  
W. G. Schneider

The velocity and absorption of ultrasound (600 kc.) has been measured throughout the critical temperature region of sulphur hexafluoride. Measurements were carried out for the coexisting liquid phase and vapor phase below Tc, and for the supercritical gas, and simultaneously, observations of the meniscus behavior in the neighborhood of Tc were made. The sound velocity for both liquid and vapor phases below Tc decreased with increasing temperature and became equal at Tc, the velocity at this point being 121.5 m. per sec. In the temperature range from 0.6° below Tc to Tc the velocity in the vapor was greater than that in the liquid. A very high absorption of sound was observed, having a maximum value at Tc and extending over a temperature range of approximately 1°. In the temperature range from Tc to 0.6° below Tc, the absorption in the liquid phase was greater than that in the vapour.


1964 ◽  
Vol 37 (4) ◽  
pp. 878-893 ◽  
Author(s):  
Barbara E. Sabey ◽  
G. N. Lupton

Abstract A laboratory investigation has been made into the variation with temperature of the hardness and resilience of a wide variety of rubber compounds of the tire tread type. The effect of hardness and resilience on the fractional properties of the compounds under wet conditions has also been studied. In the first series of tests the resilience and hardness of 25 compounds were measured over a temperature range 0° to 80° C. All were vulcanized tire tread type compounds, and the basic materials used comprised 14 natural rubbers, 7 styrene/butadiene (SBR) rubbers, 2 butyl, 1 polybutadiene, and 1 ethylene/propylene. The tests showed a marked increase in resilience with increasing temperature for all compounds except the polybutadiene; the hardness of all compounds changed very little with temperature, only a slight decrease being observed over the whole temperature rise. Nine compounds of representative resilience and hardness were selected for a second series of tests in which friction was measured over a temperature range 1° to 40° C on seven surfaces representing roads of different textures. For eight of the compounds, friction values decreased with increase in temperature; for the other compound the friction increased to a maximum value at 30° C. These changes in friction cannot be explained by changes in hardness of the compounds, but they are in accordance with resilience changes, taking into account the different test conditions obtaining in the friction and resilience tests. The friction tests also showed that with the portable skid-resistance tester used to measure friction the sharpness of the projections in the road surface is more important than their size in determining the friction values under wet conditions, even when rubber compounds of low resilience are used. The implications of the findings and their application to the study of friction between tire and road are discussed. In particular, they have a bearing on the correct interpretation of resilience measurements of tire tread materials in relation to friction values under wet conditions.


In earlier work, the absolute thermo-electric force, E of the alkalis was measured from about 60°K down to about 4°K. The absolute thermo-electric power ( S=dE/dT ) could then be derived with fair accuracy down to perhaps 8°K. The thermo-electric power of all the alkali metals has now been measured directly between 2 and 20°K, and the Thomson heats derived therefrom. The results are compared with the theory both of the ‘normal’ thermo-electric power and the Gurevich or ‘phonon-drag’ effect. It is clear from the work that experiments below 1 °K in this field will be of much interest and a programme has been started in this temperature range.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7311
Author(s):  
Paweł Nieroda ◽  
Krzysztof Ziewiec ◽  
Juliusz Leszczyński ◽  
Paweł Rutkowski ◽  
Andrzej Koleżyński

The aim of this work was to obtain dense Cu2S superionic thermoelectric materials, homogeneous in terms of phase and chemical composition, using a very fast and cheap induction-melting technique. The chemical composition was investigated via scanning electron microscopy (SEM) combined with an energy-dispersive spectroscopy (EDS) method, and the phase composition was established by X-ray diffraction (XRD). The thermoelectric figure of merit ZT was determined on the basis of thermoelectric transport properties, i.e., Seebeck coefficient, electrical and thermal conductivity in the temperature range of 300–923 K. The obtained values of the ZT parameter are comparable with those obtained using the induction hot pressing (IHP) technique and about 30–45% higher in the temperature range of 773–923 K in comparison with Cu2S samples densified with the spark plasma sintering (SPS) technique.


1953 ◽  
Vol 6 (4) ◽  
pp. 410 ◽  
Author(s):  
AJ Mortlock

Measurements have been made on 11 different metals of the change in thermo-electric power accompanying elastic tensile strain. The measurements were made over the temperature range 20?400 �C on specimens of known purity. There is evidence that the magnitude of the general effect is dependent upon the purity of the specimen. The results obtained with gold differ considerably from those found by another observer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Aermes ◽  
Alexander Hayn ◽  
Tony Fischer ◽  
Claudia Tanja Mierke

AbstractThe knowledge of cell mechanics is required to understand cellular processes and functions, such as the movement of cells, and the development of tissue engineering in cancer therapy. Cell mechanical properties depend on a variety of factors, such as cellular environments, and may also rely on external factors, such as the ambient temperature. The impact of temperature on cell mechanics is not clearly understood. To explore the effect of temperature on cell mechanics, we employed magnetic tweezers to apply a force of 1 nN to 4.5 µm superparamagnetic beads. The beads were coated with fibronectin and coupled to human epithelial breast cancer cells, in particular MCF-7 and MDA-MB-231 cells. Cells were measured in a temperature range between 25 and 45 °C. The creep response of both cell types followed a weak power law. At all temperatures, the MDA-MB-231 cells were pronouncedly softer compared to the MCF-7 cells, whereas their fluidity was increased. However, with increasing temperature, the cells became significantly softer and more fluid. Since mechanical properties are manifested in the cell’s cytoskeletal structure and the paramagnetic beads are coupled through cell surface receptors linked to cytoskeletal structures, such as actin and myosin filaments as well as microtubules, the cells were probed with pharmacological drugs impacting the actin filament polymerization, such as Latrunculin A, the myosin filaments, such as Blebbistatin, and the microtubules, such as Demecolcine, during the magnetic tweezer measurements in the specific temperature range. Irrespective of pharmacological interventions, the creep response of cells followed a weak power law at all temperatures. Inhibition of the actin polymerization resulted in increased softness in both cell types and decreased fluidity exclusively in MDA-MB-231 cells. Blebbistatin had an effect on the compliance of MDA-MB-231 cells at lower temperatures, which was minor on the compliance MCF-7 cells. Microtubule inhibition affected the fluidity of MCF-7 cells but did not have a significant effect on the compliance of MCF-7 and MDA-MB-231 cells. In summary, with increasing temperature, the cells became significant softer with specific differences between the investigated drugs and cell lines.


2013 ◽  
Vol 06 (05) ◽  
pp. 1340007 ◽  
Author(s):  
CELINE BARRETEAU ◽  
LIN PAN ◽  
YAN-LING PEI ◽  
LI-DONG ZHAO ◽  
DAVID BERARDAN ◽  
...  

During the past two years, we have underlined the great potential of p-type oxychalcogenides, with parent compound BiCuSeO , for thermoelectric applications in the medium temperature range (400–650°C). These materials, which do not contain lead and are less expensive than Te containing materials, exhibit large thermoelectric figure of merit, exceeding 1 in a wide temperature range, mainly due to an intrinsically very low thermal conductivity. This paper summarizes the main chemical and crystallographic features of this system, as well as the thermoelectric properties. It also gives new directions to improve these properties, and discuss the potential of these materials for wide scale applications in thermoelectric conversion system in the medium temperature range.


Sign in / Sign up

Export Citation Format

Share Document