Structural and Magnetic Properties of Co50 ± x Pt50 ± x Thin Films Prepared by Mbe Co-Evaporation on (001) MgO Substrate at Various Temperatures

1998 ◽  
Vol 517 ◽  
Author(s):  
V. Parasote ◽  
M.-C. Cadevwlle ◽  
V. Pierron-Bohnes ◽  
W. Grange

AbstractStructural and magnetic properties of Co50 ± x Pt50± x films 25-50 nm thick, prepared by molecular beam epitaxy onto a Pt buffer grown on MgO (001) substrate have been investigated. A series of 3 samples with different compositions (x = 6, 0, -6) was grown at 800 K on a 10 nm thick Pt buffer and another series of 5 samples of equiatomic composition was prepared at various growth temperatures (390 K≤ TG≤ 780 K) on a Pt buffer 4 nm thick. X-ray diffraction and TEM studies show the presence of grains with [111] and [002] orientations, the [002] grains being a mixture of the tetragonal L10 ordered phase and of the fcc disordered one. Both the thickness of the buffer layer and the deposition temperature are determinant parameters of the structural quality of the films and of the degree of long range order (LRO). An apparent LRO parameter (ηapp) is deduced from the superstructure and main peak intensity ratio. Its increase with the growth temperature is described through a thermally activated model that yields a small activation energy of 0.28 eV, illustrating the role played by both surface diffusion and surface interactions in building the L10 compound in agreement with theoretical predictions. An average uniaxial magnetocrystalline anisotropy energy (Kuav) is deduced from the magnetization curves measured by a SQUID. The anisotropy energy of the [002] grains (Ku002) is deduced, assuming a linear relationship between the anisotropies and the phase percentages. One observes a continuous but not linear increase of Ku002 with ηapp.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Gui-fang Li ◽  
Shibin Liu ◽  
Shanglin Yang ◽  
Yongqian Du

We prepared magnetic thin films Ni81Fe19on single-crystal Si(001) substrates via single graphene layer through magnetron sputtering for Ni81Fe19and chemical vapor deposition for graphene. Structural investigation showed that crystal quality of Ni81Fe19thin films was significantly improved with insertion of graphene layer compared with that directly grown on Si(001) substrate. Furthermore, saturation magnetization of Ni81Fe19/graphene/Si(001) heterostructure increased to 477 emu/cm3with annealing temperatureTa=400°C, which is much higher than values of Ni81Fe19/Si(001) heterostructures withTaranging from 200°C to 400°C.


2022 ◽  
Vol 64 (3) ◽  
pp. 326
Author(s):  
С.А. Кукушкин ◽  
А.В. Осипов ◽  
Е.В. Осипова ◽  
В.М. Стожаров

X-ray diffraction and total external reflection of X-rays (X-ray reflectometry) methods were used to study the successive stages of synthesis of epitaxial SiC films on Si (100) X-ray diffraction and total external X-ray reflection (XRD) methods were used to study successive stages of synthesis of epitaxial SiC films on Si (100) surfaces, (110) and (111) surfaces by the atom substitution method. The data on the transformation evolution of (100) surfaces were studied, (110) and (111) Si, into SiC surfaces. A comparative analysis of the X-ray structural quality of the SiC layers grown on Si by the atom substitution method with the quality of SiC layers grown by Advanced Epi by the standard CVD method. A modified technique for the total outer X-ray reflection method, based on measurements of the intensity of the reflected X-rays using a special parabolic mirror. It is shown that the method of total external reflection method makes it possible to obtain important information about the degree of surface roughness of SiC layers, the evolution of their crystal structure and plasmon energy in the process of Si to SiC conversion.


2018 ◽  
Vol 197 ◽  
pp. 02007
Author(s):  
Erfan Handoko ◽  
Anggoro B S ◽  
Iwan Sugihartono ◽  
Mangasi AM ◽  
Dini Siti Nurwulan ◽  
...  

In In this study to understand the substitutional effect of Co-Zn on structural and magnetic properties of the BaFe12-2xCoxZnxO19 M-type hexagonal ferrites with concentration (x= 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized by the ceramic method. The results of x-ray diffraction show polycrystalline with single phase. Scanning electron microscopy micrographs shows the hexagonal ferrites that are composed of small particles with large porosity, roughly of spherical shapes. The substitution of Fe3+ ion by Co2+ and Zn2+ has changed magnetic properties of hexagonal ferrites.


2014 ◽  
Vol 59 (3) ◽  
pp. 315-322 ◽  
Author(s):  
A. E. Blagov ◽  
A. L. Vasiliev ◽  
A. S. Golubeva ◽  
I. A. Ivanov ◽  
O. A. Kondratev ◽  
...  

2010 ◽  
Vol 25 (S1) ◽  
pp. S31-S35
Author(s):  
W. H. Zhang ◽  
J. Q. Li ◽  
Y. J. Yu ◽  
F. S. Liu ◽  
W. Q. Ao ◽  
...  

The structural and magnetic properties of the DyCo4−xFexGa compounds with x=0, 0.5, 1, and 1.5 have been investigated by X-ray diffraction and magnetic measurements. Powder X-ray diffraction analysis reveals that each of the DyCo4−xFexGa compounds has a hexagonal CaCu5-type structure (space group P6/mmm). The Fe solubility limit in DyCo4−xFexGa is x<1.5. The higher the value of x, the larger the unit-cell parameters a, c, V, and the 3d-sublattice moment but the smaller the 3d uniaxial anisotropy. Magnetic measurements show that the Curie temperature of DyCo4−xFexGa increases from 498 K for x=0 to 530 K for x=1.5, the compensation temperature Tcomp decreases from 286 K for x=0 to 238 K for x=1.5, and the spin-reorientation transition temperature increases from 403 K for x=0 to 530 K for x=0.5. No spin-reorientation transition was found in the samples with x=1.0 and 1.5. The saturation magnetization of DyCo4−xFexGa measured at 173 K increases but the magnetization measured at 300 K decreases with increasing Fe content x.


2009 ◽  
Vol 16 (01) ◽  
pp. 99-103 ◽  
Author(s):  
L. S. CHUAH ◽  
Z. HASSAN ◽  
H. ABU HASSAN

High-quality aluminum nitride ( AlN ) layers with full width at half maximum (FWHM) values of 11 arcmin were grown by plasma-assisted molecular-beam epitaxy on Si (111) substrates. AlN nucleation layers are being investigated for the growth of GaN on Si . Growth using AlN buffer layers leads to Al -polar films, with surfaces strongly dependent on the flux conditions used. Flat surfaces can be obtained by growing as Al -rich as possible, although Al droplets tend to form. Before starting the AlN growth, a few monolayers of Al are deposited on the substrate to avoid the formation of Si 3 N 4. X-ray diffraction (XRD) techniques were employed to determine the surface and structural quality of the layers. XRD revealed that monocrystalline AlN was obtained. Best AlN films were obtained at high substrate temperatures (875°C) and III/V ratios close to stoichiometry.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Eman S. Al-Hwaitat ◽  
Sami H. Mahmood ◽  
Mahmoud Al–Hussein ◽  
Ibrahim Bsoul

We report on the synthesis and characterization of Ba3[Cu0.8−xZnxMn0.2]2Fe24O41 (x = 0.0, 0.2, 0.4, 0.6, and 0.8) barium hexaferrites. The samples were prepared by high-energy ball-milling technique and double-sintering approach. The effects of Zn substitution for Cu on the structural and magnetic properties of the prepared samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). XRD patterns of the samples revealed the presence of a major Z-type hexaferrite phase, together with secondary M-type and Y-type phases. The magnetic results indicated that the saturation magnetization increased slightly with increasing the Zn content, while the coercivity and magnetocrystalline anisotropy field exhibited a decreasing tendency with the increase of Zn content. The thermomagnetic curves revealed the complex magnetic structure of the prepared samples and confirmed that the Curie temperature of the magnetic phases decreased with increasing x as a result of the reduction of the strength of the superexchange interactions.


Sign in / Sign up

Export Citation Format

Share Document