Internal Stress of ZnO thin Films Caused by Thickness Distribution and Crystallinity

1998 ◽  
Vol 518 ◽  
Author(s):  
M. Takeuchi ◽  
K. Inoue ◽  
Y. Yoshino ◽  
K. Ohwada

AbstractThe improvement of thickness distribution and crystallinity in ZnO thin films prepared by radio frequency (rf) planer magnetron sputtering has been studied. Optimum thickness distribution of less than ± 2.2% in a 3-inch wafer is obtained by changing the substrate angle to the ZnO target and is in accordance with cosine law. The c-axis orientation perpendicular to the silicon substrate is confirmed by x-ray diffraction. The stress of ZnO thin films is larger than 0.3GPa and its distribution is independent of the substrate angle that is set at a slant to the optimum angle for thickness distribution. These results indicate that thickness distribution of ZnO thin films heavily depends on the substrate angle, while the stress and its distribution are independent of the setting angle of the substrate. Stress distribution is attributed to the distribution of argon ions and sputtered molecules impinging a wafer.

2011 ◽  
Vol 287-290 ◽  
pp. 2347-2350
Author(s):  
Rong Fan ◽  
Lin Jun Wang ◽  
Jian Huang ◽  
Ke Tang ◽  
Ji Jun Zhang ◽  
...  

ZnO thin films were deposited by radio frequency (R. F.) magnetron sputtering on various diamond film substrates with different surface roughness. The influence of surface roughness on structural properties and surface morphology of ZnO thin films was investigated by X-ray diffraction (XRD) and atom force microscopy (AFM), respectively. Only on the nanocrystalline and free-standing diamond substrates, ZnO films with preferential c-axis orientation and smooth surface were obtained.


2017 ◽  
Vol 05 (01) ◽  
pp. 1750004
Author(s):  
R. Vettumperumal ◽  
S. Kalyanaraman ◽  
R. Thangavel

Nanocrystalline ruthenium (Ru)-doped ZnO thin films on sapphire substrate was prepared using sol–gel method by spin coating technique. The structural and I-V characteristics of Ru doped ZnO thin films were studied from the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) analysis and Raman spectroscopy. X-ray diffraction (XRD) results revealed that the deposited films belonged to hexagonal wurtzite structure with c-axis orientation. It is also confirmed from the Raman spectra. Enhancement of longitudinal optical (LO) phonon is observed by the strong electron–phonon interaction. An observed increment in sheet resistance with increase in dopant percentage of Ru (1–2[Formula: see text]mol%) in ZnO films was found and better I-V characteristic behavior was observed at 1[Formula: see text]mol% of Ru-doped ZnO thin films. Trap limited current flow inside the material was calculated from the log I versus log V plot in the higher voltage region.


2005 ◽  
Vol 475-479 ◽  
pp. 1825-1828
Author(s):  
Ju Hyun Myung ◽  
Nam Ho Kim ◽  
Hyoun Woo Kim

We have demonstrated the growth of ZnO thin films with c-axis orientation at room temperature on various substrates such as Si(100), SiO2, and sapphire by the r.f. magnetron sputtering method. X-ray diffraction (XRD) and scanning electron microscopy altogether indicated that the larger grain size and the higher crystallinity were attained when the ZnO films were deposited on sapphire substrates, compared to the films on Si or SiO2 substrates. The c-axis lattice constant decreased by thermal annealing for the ZnO films deposited on Si or SiO2 substrates, while increased by the thermal annealing for the ZnO films grown on sapphire substrates.


2010 ◽  
Vol 663-665 ◽  
pp. 215-218
Author(s):  
Shuang Li ◽  
Feng Xiang Wang ◽  
Gang Fu ◽  
Yan Ju Ji ◽  
Jun Qing Zhao

ZnO thin films with a strong c-axis orientation have been successfully deposited on quartz glass substrates at room temperature by radio frequency (rf) magnetron sputtering technology. X-ray diffraction, Rutherford backscattering, and prism coupling method were used to investigate the structure and optical properties of ZnO thin films. X-ray diffraction results shown lower sputtering pressure is propitious to increasing the crystallinity, and enhancing the c-axis orientation of the films. Rutherford backscattering analysis revealed that the films were stoichiometric ZnO, and as the sputtering pressure decreasing, the deposition rate were increased from 0.758 3nm/min to 2.892 nm min for sputtering pressure in the range from 1.0Pa to 0.5Pa. Under the lower sputtering pressure (0.5Pa) condition, the results obtained by prism coupling method investigation confirmed that the effective refractive index of ZnO films (no=1.8456,ne=1.8276) at a wavelength of 633nm is more close to Crystal Refractive index.


2001 ◽  
Vol 666 ◽  
Author(s):  
Fumiaki Mitsugi ◽  
Tomoaki Ikegami ◽  
Kenji Ebihara ◽  
Jagdish Narayan ◽  
Alexander M. Grishin

ABSTRACTWe prepared colossal magnetoresistive La0.8Sr0.2MnO3 thin films on the MgO, SrTiO3 and LaAlO3 single crystal substrates using KrF excimer pulsed laser ablation technique. The structural and electrical properties of the La0.8Sr0.2MnO3 thin films which were strained by the lattice mismatch are reported. The in-plane lattice mismatch between the La0.8Sr0.2MnO3 and MgO, SrTiO3 and LaAlO3 substrates are -7.8 %, -0.5 % and +2.3 %, respectively. The X-ray diffraction spectra of the films exhibited c-axis orientation. In the case of the La0.8Sr0.2MnO3 / LaAlO3 thin films with thickness over 100 nm, the divided (00l) peaks were observed. The surface morphology and transport property of the strongly stressed La0.8Sr0.2MnO3 / LaAlO3 were different from those of La0.8Sr0.2MnO3 / MgO and La0.8Sr0.2MnO3 / SrTiO3thin films.


2015 ◽  
Vol 1107 ◽  
pp. 678-683 ◽  
Author(s):  
Lam Mui Li ◽  
Azmizam Manie Mani ◽  
Saafie Salleh ◽  
Afishah Alias

Zinc Oxide (ZnO) has attracted much attention because of its high optical transmittance approximately ~80 % with a wide band gap of (3.3 eV at 300 K) and a relatively low cost material. ZnO thin films were deposited on plastic substrate using RF powered magnetron sputtering method. The target used is ZnO disk with 99.99 % purity. The sputtering processes are carried out with argon gas that flow from 10-15 sccm. Argon is used to sputter the ZnO target because the ability of argon that can remove ZnO layer effectively by sputtering with argon plasma bombardment. The deposited ZnO thin films are characterized using X-Ray Diffraction (XRD) and UV-Vis Spectrometer. The analysis of X-ray diffraction show that good crystalline quality occurs at nominal thickness of 400 nm. The optical studies showed that all the thin films have high average transmittance of approximately 80 % and the estimated value of optical band gap is within 3.1 eV-3.3 eV range.


2017 ◽  
Vol 395 ◽  
pp. 16-23 ◽  
Author(s):  
E. Dobročka ◽  
P. Novák ◽  
D. Búc ◽  
L. Harmatha ◽  
J. Murín

2007 ◽  
Vol 1035 ◽  
Author(s):  
Zheng Yang ◽  
Maurizio Biasini ◽  
Leelaprasanna J Mandalapu ◽  
Zheng Zuo ◽  
Ward P Beyermann ◽  
...  

AbstractCo and Mn ions were implanted into n-type ZnO thin films with different electron carrier concentrations. X-ray diffraction measurements show that the ZnO:Co and ZnO:Mn thin films are of high crystallinity. From magnetization measurements, ferromagnetism was observed in both n-type ZnO:Co and n-type ZnO:Mn thin films with Curie temperatures well-above room temperature. Furthermore, the electron carrier concentration dependence of the saturated magnetization was measured in both types of thin films, and our results support an electron-mediated mechanism for ferromagnetism in ZnO:Co, as predicted by theory. However, our measurements seem to contradict theory for ZnO:Mn, which only predicts long-range ferromagnetism for p-type mediated material.


2011 ◽  
Vol 399-401 ◽  
pp. 926-929
Author(s):  
Wei Zhang ◽  
Mei Ling Yuan ◽  
Xian Yang Wang ◽  
Jun Ouyang

BaTiO3(BTO) thin films were grown on (100) SrTiO3(STO) single crystal substrates using the RF-magnetron sputtering technique (RFMS) in both pure argon and mixed Ar/O2(20% O2) atmosphere. A La0.5Sr0.5CoO3(LSCO) layer was deposited as the bottom electrode by a 90° off-axis single-target RFMS. θ-2θ X-ray diffraction measurements showed that BTO thin films grown in both cases had a highly preferred c-axis orientation (001). From hysteresis measurements, it was confirmed that both films are ferroelectric. The ferroelectric polarizations 2Pr were 6.6 μC/cm2and 27.1 μC/cm2, for the BTO films grown in pure argon and in mixed Ar/O2atmosphere, respectively.


Sign in / Sign up

Export Citation Format

Share Document