Electrically Assisted Aerosol Reactors using Ring Electrodes

1998 ◽  
Vol 520 ◽  
Author(s):  
H. Briesen ◽  
A. Fuhrmann ◽  
S. E. Pratsinis

ABSTRACTNanostructured materials have distinctly different properties than the bulk because the number of atoms or molecules on their surface is comparable to that inside the particles creating a number of new materials and applications. Despite this potential for nanoparticles, very few practical applications have been developed because of the current high cost of these materials ($100/lb). On the other hand, flame aerosol reactors are routinely used for inexpensive production (∼$1/lb) of submicron sized commodities such as carbon blacks, pigmentary titania, fumed silica and preforms for optical fibers in telecommunications. Flame technology can be used also for synthesis of nanoparticles with precisely controlled characteristics. In these reactors, gas mixing is used to widely control the primary particle size and crystallinity of product powders while electric fields can be used to narrowly control the primary, and aggregate particle size and crystallinity. Here the application of axial electrical fields on a silica producing flame using hexamethyldisiloxane (HMDS) as precursor is presented. Experiments varying the precursor delivery rate corresponding to total production rates of 10, 20 and 30 g/h are presented. Electric fields decreased the particle size by electrostatic dispersion and repulsion of charged particles and by the reduced particle residence time inside the flame.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4461 ◽  
Author(s):  
Regina Magalhães ◽  
João Pereira ◽  
Oleksandr Tarasenko ◽  
Sonia Martin-Lopez ◽  
Miguel González-Herráez ◽  
...  

Nowadays there is an increasing demand for the cost-effective monitoring of potential threats to the integrity of high-voltage networks and electric power infrastructures. Optical fiber sensors are a particularly interesting solution for applications in these environments, due to their low cost and positive intrinsic features, including small size and weight, dielectric properties, and invulnerability to electromagnetic interference (EMI). However, due precisely to their intrinsic EMI-immune nature, the development of a distributed optical fiber sensing solution for the detection of partial discharges and external electrical fields is in principle very challenging. Here, we propose a method to exploit the third-order and second-order nonlinear effects in silica fibers, as a means to achieve highly sensitive distributed measurements of external electrical fields in real time. By monitoring the electric-field-induced variations in the refractive index using a highly sensitive Rayleigh-based CP-φOTDR scheme, we demonstrate the distributed detection of Kerr and Pockels electro-optic effects, and how those can assign a new sensing dimension to optical fibers, transducing external electric fields into visible minute disturbances in the guided light. The proposed sensing configuration, electro-optical time domain reflectometry, is validated both theoretically and experimentally, showing experimental second-order and third-order nonlinear coefficients, respectively, of χ(2) ~ 0.27 × 10−12 m/V and χ(3) ~ 2.5 × 10−22 m2/V2 for silica fibers.


The electrical characteristics of carbon formation and deposition are studied for a flat counterflow diffusion flame to which electric fields are applied so as to draw flame ions of either sign through the pyrolysis zone and on to the nearer burner-electrode. The dependences of flame emission, rates of carbon formation and deposition, and of particle size, on field intensity and ion flux are investigated. It is concluded that particles are charged both by electron emission and by attachment, and either a net positive or a negative charge can be induced by the appropriate field configuration. The effect of fields on the net charges induces many diverse effects. Changes in radiation from the pyrolysis zone and in the site and form of carbon deposition are only the most apparent ones. By varying the residence time in the pyrolysis zone, particle size an d hence the total amount of carbon formed can be varied very greatly. Positive flame ions appear to act as nuclei and their neutralization by secondary negative charge decreases carbon formation. Practical applications are discussed in terms of the theory under each of the headings of nucleation, growth and deposition in the presence of fields.


1997 ◽  
Vol 12 (4) ◽  
pp. 1031-1042 ◽  
Author(s):  
Srinivas Vemury ◽  
Sotiris E. Pratsinis ◽  
Lowinn Kibbey

Nanophase particles with precisely controlled characteristics are made by oxidation of their halide vapors in electrically assisted hydrocarbon flames using needle-shaped or plate electrodes. The particle size and crystallinity decrease with increasing field strength across the flame. The field generated by the electrodes across the flame decreases the particle residence time in the high temperature region of the flame. Furthermore, it charges the newly formed particles, resulting in electrostatic repulsion and dispersion that decreases particle growth by coagulation. Electric fields reduced the primary particle size of TiO2, the agglomerate size of SnO2, and both the agglomerate and primary size of SiO2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zainab Gholami ◽  
Farhad Khoeini

AbstractThe main contribution of this paper is to study the spin caloritronic effects in defected graphene/silicene nanoribbon (GSNR) junctions. Each step-like GSNR is subjected to the ferromagnetic exchange and local external electric fields, and their responses are determined using the nonequilibrium Green’s function (NEGF) approach. To further study the thermoelectric (TE) properties of the GSNRs, three defect arrangements of divacancies (DVs) are also considered for a larger system, and their responses are re-evaluated. The results demonstrate that the defected GSNRs with the DVs can provide an almost perfect thermal spin filtering effect (SFE), and spin switching. A negative differential thermoelectric resistance (NDTR) effect and high spin polarization efficiency (SPE) larger than 99.99% are obtained. The system with the DV defects can show a large spin-dependent Seebeck coefficient, equal to Ss ⁓ 1.2 mV/K, which is relatively large and acceptable. Appropriate thermal and electronic properties of the GSNRs can also be obtained by tuning up the DV orientation in the device region. Accordingly, the step-like GSNRs can be employed to produce high efficiency spin caloritronic devices with various features in practical applications.


2021 ◽  
Author(s):  
Guofeng Su ◽  
Ximing Zhong ◽  
Songfa Qiu ◽  
Jiajin Fan ◽  
hongjun zhou ◽  
...  

Abstract In this work, a novel antibacterial nanocomposite system was developed using mesoporous silica (MSN) as an effective nanocarrier, and the resultant nanocomposites demonstrated remarkable antibacterial performance due to the synergistic effect among nano zinc oxides, silver nanoparticles, and polydopamine (PDA). The successful synthesis of MSN/ZnO@PDA/Ag nanocomposites was confirmed. The physicochemical properties and the morphologies of these nanocomposites were investigated. It was found that the particle size increased along with the evolution of these nanocomposites. Besides, nano zinc oxides were formed in the nanoconfinement channel of mesoporous silica with a particle size about 2 nm, and that of silver nanoparticle was less than 50 nm. In addition, the results revealed that the presence of mesoporous silica could effectively prevent the formation of large-size silver nanoparticles and facilitate their well dispersion. Due to the synergistic effect among nano zinc oxides, silver nanoparticles, and polydopamine, these nanocomposites exhibited remarkable antibacterial performance even at a low concentration of 313 ppm, and the antibacterial mechanism was also elucidated. Therefore, this work provides a facile and controllable approach to preparing synergistically antibacterial nanocomposites, and the remarkable antibacterial performance make them suitable for practical applications.


2018 ◽  
Vol 20 (1) ◽  
pp. 53 ◽  
Author(s):  
Dilip Sundaram

The metal-water system is attractive for propulsion and energy-conversion applications. Of all metals, aluminum is attractive due to its high energy density, relative safety, and low cost. Experimental studies provide new insight on the combustion and propulsive behaviors. The burning rate is found to be a strong function of both pressure and particle size. Furthermore, there is a wide scatter in the measured pressure exponents due to differences in particle size, pressure, pH, and equivalence ratio. A major problem with Al/H2O mixtures is incomplete combustion and poor impulses, thereby rendering Al/H2O mixtures unsuitable for practical applications. Efforts to improve the performance of Al/H2O mixtures have only met with moderate success. Although experiments have revealed these new trends, not much is offered in terms of the underlying physics and mechanisms. To explore the combustion mechanisms, theoretical models based on energy balance analysis have been developed. These models involve numerous assumptions and many complexities were either ignored or treated simplistically. The model also relies on empirical inputs, which makes it more a useful guide than a predictive tool. Future works must endeavor to conduct a more rigorous analysis of metal-water combustion. Empirical inputs should be avoided and complexities must be properly treated to capture the essential physics of the problem. The model should help us properly understand the experimental trends, offer realistic predictions for unexplored conditions, and suggest guidelines and solutions in order to realize the full potential of metal-water mixtures.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5988
Author(s):  
Jungwoo Seo ◽  
Jae Hee Kim ◽  
Jungsuek Oh

A microstrip-to-slot line-fed miniaturized Vivaldi antenna using semicircular patch embedment is proposed in this study. The conventional Vivaldi antenna has ultrawide bandwidth, but suffers from low gain in the low-frequency band. The proposed antenna topology incorporates the embedment of semicircular patch elements into the side edge of the antenna. This enables the phases of electric fields at both ends of the antenna to be out of phase. Since the distance between the two ends are λL/2 where λL is the wavelength at a low operating frequency, this antenna topology can achieve the constructive addition of electrical fields at the radiating end, leading to gain enhancement at the chosen low frequency. In comparison with the conventional Vivaldi antenna, the proposed antenna has a wider bandwidth from 2.84 to 9.83 GHz. Moreover, the simulated result shows a gain enhancement of 5 dB at low frequency. This cannot be realized by the conventional low-band impedance matching techniques only relying on slotted topologies. The measured results of this proposed antenna with a size of 45 × 40 × 0.8 mm3 are in good agreement with the simulated results.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Jean-Marie Henault ◽  
Gautier Moreau ◽  
Sylvain Blairon ◽  
Jean Salin ◽  
Jean-Robert Courivaud ◽  
...  

Although optical fiber sensors have been developed for 30 years, there is a gap between lab experiments and field applications. This article focuses on specific methods developed to evaluate the whole sensing chain, with an emphasis on (i) commercially-available optoelectronic instruments and (ii) sensing cable. A number of additional considerations for a successful pairing of these two must be taken into account for successful field applications. These considerations are further developed within this article and illustrated with practical applications of water leakage detection in dikes and concrete structures monitoring, making use of distributed temperature and strain sensing based on Rayleigh, Raman, and Brillouin scattering in optical fibers. They include an adequate choice of working wavelengths, dedicated localization processes, choices of connector type, and further include a useful selection of traditional reference sensors to be installed nearby the optical fiber sensors, as well as temperature compensation in case of strain sensing.


2007 ◽  
Vol 21 (10) ◽  
pp. 1715-1720 ◽  
Author(s):  
NANA METREVELI ◽  
ZAUR KACHLISHVILI ◽  
BEKA BOCHORISHVILI

The transverse runaway (TR) is a phenomenon whereby for a certain combination of energy and momentum scattering mechanisms of hot electrons, and for a certain threshold of the applied electric field, the internal (total) field tends to infinity. In this work, the effect of the magnetic field on the transverse runaway threshold is considered. It is shown that with increasing magnetic field, the applied critical electric fields relevant to TR decrease. The obtained results are important for practical applications of the TR effect as well as for the investigation of possible nonlinear oscillations that may occur near the TR threshold.


Sign in / Sign up

Export Citation Format

Share Document