Synthesis-Morphology-Mechanical Properties Relationships Of Polymer-Silica Nanocomposite Hybrid Materials

1999 ◽  
Vol 576 ◽  
Author(s):  
P. Hajji ◽  
L. David ◽  
J. F. Gerard ◽  
H. Kaddami ◽  
J. P. Pascault ◽  
...  

ABSTRACTTwo types of polymer-silica nanocomposites have been prepared by undergoing free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) either in the presence of HEMA-functionalized SiO2 nanoparticles (Type 1) or during the simultaneous in situ growing of the silica phase through the acid-catalyzed sol-gel polymerization of tetraethoxysilane (TEOS) (Type 2). Relationships between synthesis, morphology and mechanical properties are discussed mainly on the basis of solid state 29Si nuclear magnetic resonance spectroscopy (NMR), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA).

2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1426
Author(s):  
Tomáš Remiš ◽  
Petr Bělský ◽  
Tomáš Kovářík ◽  
Jaroslav Kadlec ◽  
Mina Ghafouri Azar ◽  
...  

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.


2014 ◽  
Vol 3 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Hannes Alex ◽  
Norbert Steinfeldt ◽  
Klaus Jähnisch ◽  
Matthias Bauer ◽  
Sandra Hübner

AbstractNanoparticles (NP) have specific catalytic properties, which are influenced by parameters like their size, shape, or composition. Bimetallic NPs, composed of two metal elements can show an improved catalytic activity compared to the monometallic NPs. We, herein, report on the selective aerobic oxidation of benzyl alcohol catalyzed by unsupported Pd/Au and Pd NPs at atmospheric pressure. NPs of varying compositions were synthesized and characterized by UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The NPs were tested in the model reaction regarding their catalytic activity, stability, and recyclability in batch and continuous procedure. Additionally, in situ extended X-ray absorption fine structure (EXAFS) measurements were performed in order to get insight in the process during NP catalysis.


NANO ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. 1850119
Author(s):  
Xiaoyan Li ◽  
Yunlong Yu ◽  
Xiangfeng Guan ◽  
Peihui Luo ◽  
Linqin Jiang ◽  
...  

Eu[Formula: see text]/Tb[Formula: see text] co-doped nanocomposite containing CeO2 nanocrystals was successfully prepared by an in situ sol–gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of CeO2 nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of CeO2 content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.


2002 ◽  
Vol 726 ◽  
Author(s):  
Van Nhan Nguyen ◽  
François Xavier Perrin ◽  
Jean-Louis Vernet

AbstractMetal-oxide ceramer films have been developed using an acrylic polymer bearing a low amount of methacrylic acid units (ca. 4%mol) as the organic phase with titanium tetrabutoxide as the inorganic sol-gel precursor. The characterisation of free films was realized by various experimental methods. The formation of COOTi bonds prevents large scale phase separation between the organic component and the mineral network. Mechanical properties of the hybrid films have been investigated through dynamic mechanical analysis. The influence of the titania content on the damping peak amplitude suggests that titania is molecularly dispersed in the polymer matrix and that it significantly hinders the segmental motion of the polymer chains. However, the low content in potential carboxylic crosslinking sites explains why the glass transition temperature remains relatively unchanged when titania content increases. Vickers microhardness measurements used in this study allowed us to understand the contribution of the inorganic part (phase TiO2) to the mechanical properties of the polymer. The creep of hybrids has been studied carrying out hardness measurements under various indentation times. The mineral constituent leads to an important increase of the hardness and limits, in a significant way, the creep of polymer.


2012 ◽  
Vol 12 ◽  
pp. 149-156 ◽  
Author(s):  
Rameshwar Adhikari

The influence of the presence of uncoupled polystyrene-block-polybutadiene (SB) diblock chains to polystyrene-block-polybutadiene-block-polystyrene (SBS) triblock copolymers on the mechanical properties of the latter has been studied by means of tensile testing and dynamic mechanical analysis preparing several lamellae forming SBS/ SB blends through solution casting. The microphase-separated morphology of the samples was investigated by transmission electron microscopy. Both large strain deformation tensile deformation behaviour and viscoelastic properties of the SBS block copolymers were found to be affected appreciably by the presence of uncoupled SB diblock. The storage modulus of linear SBS was found to drop more sharply in the plateau region than for the radial SBS at the same SB content. At low SB content (up to 20 wt.-% for linear SBS and still higher for radial one), the overall tensile properties was not negatively influenced. On the whole, star block copolymers were found to be less sensitive towards the presence of diblock.DOI: http://dx.doi.org/10.3126/njst.v12i0.6493 Nepal Journal of Science and Technology 12 (2011) 149-156


Author(s):  
Chang Dae Han

Block copolymer consists of two or more long blocks with dissimilar chemical structures which are chemically connected. There are different architectures of block copolymers, namely, AB-type diblock, ABA-type triblock, ABC-type triblock, and AmBn radial or star-shaped block copolymers, as shown schematically in Figure 8.1. The majority of block copolymers has long been synthesized by sequential anionic polymerization, which gives rise to narrow molecular weight distribution, although other synthesis methods (e.g., cationic polymerization, atom transfer radical polymerization) have also been developed in the more recent past. Owing to immiscibility between the constituent blocks, block copolymers above a certain threshold molecular weight form microdomains (10–50 nm in size), the structure of which depends primarily on block composition (or block length ratio). The presence of microdomains confers unique mechanical properties to block copolymers. There are many papers that have dealt with the synthesis and physical/mechanical properties of block copolymers, too many to cite them all here. There are monographs describing the synthesis and physical properties of block copolymers (Aggarwal 1970; Burke and Weiss 1973; Hamley 1998; Holden et al. 1996; Hsieh and Quirk 1996; Noshay and McGrath 1977). Figure 8.2 shows schematically four types of equilibrium microdomain structures observed in block copolymers. Referring to Figure 8.2, it is well established (Helfand and Wasserman 1982; Leibler 1980) that in microphase-separated block copolymers, spherical microdomains are observed when the volume fraction f of one of the blocks is less than approximately 0.15, hexagonally packed cylindrical microdomains are observed when the value of f is between approximately 0.15 and 0.44, and lamellar microdomains are observed when the value of f is between approximately 0.44 and 0.50. Some investigators have observed ordered bicontinuous double-diamonds (OBDD) (Thomas et al. 1986; Hasegawa et al. 1987) or bicontinuous gyroids (Hajduk et al. 1994) at a very narrow range of f (say, between approximately 0.35 and 0.40) for certain block copolymers. Figure 8.2 shows only one half of the symmetricity about f = 0.5. Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) have long been used to investigate the types of microdomain structures in block copolymers.


1999 ◽  
Vol 181 (8) ◽  
pp. 2323-2329 ◽  
Author(s):  
Miguel Prudêncio ◽  
Robert R. Eady ◽  
Gary Sawers

ABSTRACT The nirA gene encoding the blue dissimilatory nitrite reductase from Alcaligenes xylosoxidans has been cloned and sequenced. To our knowledge, this is the first report of the characterization of a gene encoding a blue copper-containing nitrite reductase. The deduced amino acid sequence exhibits a high degree of similarity to other copper-containing nitrite reductases from various bacterial sources. The full-length protein included a 24-amino-acid leader peptide. The nirA gene was overexpressed inEscherichia coli and was shown to be exported to the periplasm. Purification was achieved in a single step, and analysis of the recombinant Nir enzyme revealed that cleavage of the signal peptide occurred at a position identical to that for the native enzyme isolated from A. xylosoxidans. The recombinant Nir isolated directly was blue and trimeric and, on the basis of electron paramagnetic resonance spectroscopy and metal analysis, possessed only type 1 copper centers. This type 2-depleted enzyme preparation also had a low nitrite reductase enzyme activity. Incubation of the periplasmic fraction with copper sulfate prior to purification resulted in the isolation of an enzyme with a full complement of type 1 and type 2 copper centers and a high specific activity. The kinetic properties of the recombinant enzyme were indistinguishable from those of the native nitrite reductase isolated from A. xylosoxidans. This rapid isolation procedure will greatly facilitate genetic and biochemical characterization of both wild-type and mutant derivatives of this protein.


2019 ◽  
Vol 947 ◽  
pp. 82-90
Author(s):  
Pirutchada Musigapong ◽  
Sophie Marie Briffa ◽  
Iseult Lynch ◽  
Siriwat Soontaranon ◽  
N. Chanlek ◽  
...  

The information provided by different characterisation methods when measuring particle size varies depending on the chosen technique and analytical approach (e.g. light scattering, transmission electron microscopy, spectroscopy, x-ray scattering). This in turn has an impact on the accuracy of the results as well as comparability between methods and overall confidence on the analyses. The present study used a common sol-gel reaction to synthesise amorphous silica nanoparticles (aSiNPs) and characterised the product purity and homogeneity. The reaction involved hydrolysis and condensation of tetraethyl orthosilicate (TEOS) in the presence of lysine, which acted as catalyst for the silica production and also as a capping agent for particle size control in a suspension kept at pH 8-10. According to DLS data, the stock suspension was stable for at least 6 months in Milli Q water without surfactant when kept at 4°C. This study focused on multi-method size and shape characterisation of the aSiNPs, involving the following techniques: DLS, TEM, FTIR, STEM and SAXS. These techniques provided information on hydrodynamic diameter, core particle dimensions, sphere equivalent size, and radius of gyration. Our results show two particle populations, one around 2 nm and the other around 7 nm in diameter. Notably, these two populations are not resolved (i.e. “visible”) by all methods used.


Sign in / Sign up

Export Citation Format

Share Document