Thixotropy of Semisolid Metals

1999 ◽  
Vol 578 ◽  
Author(s):  
Andreas N. Alexandrou ◽  
Gilmer R. Burgos ◽  
Vladimir M. Entov

AbstractUnderstanding the time-dependent flow behavior of metal alloys in semisolid state is essential for the further development of the process. In the present investigation, the thixotropic behavior of semisolid slurries is modeled using conservation equations and the Herschel-Bulkley fluid model. The rheological parameters are assumed to be functions of the solid volume fraction, and of a structural parameter that changes with processing history. The evolution of the structural parameter is described by a first order kinetic differential equation that relates the rate of build-up and break-down of the solid skeleton. The model is implemented into a computer code to predict die filling.

2014 ◽  
Vol 62 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Gianandrea Vittorio Messa ◽  
Stefano Malavasi

Abstract The flow of a mixture of liquid and solid particles at medium and high volume fraction through an expansion in a rectangular duct is considered. In order to improve the modelling of the phenomenon with respect to a previous investigation (Messa and Malavasi, 2013), use is made of a two-fluid model specifically derived for dense flows that we developed and implemented in the PHOENICS code via user-defined subroutines. Due to the lack of experimental data, the two-fluid model was validated in the horizontal pipe case, reporting good agreement with measurements from different authors for fully-suspended flows. A 3D system is simulated in order to account for the effect of side walls. A wider range of the parameters characterizing the mixture (particle size, particle density, and delivered solid volume fraction) is considered. A parametric analysis is performed to investigate the role played by the key physical mechanisms on the development of the two-phase flow for different compositions of the mixture. The main focuses are the distribution of the particles in the system and the pressure recovery


Author(s):  
Gombi Rachappa Manohar ◽  
Puttaswamy Venkatesh ◽  
Bijjanal Jayanna Gireesha ◽  
Gosikere Kenchappa Ramesh

In the current investigation a mathematical model is simplified to explore the numerical treatment for the thermal and flow behavior in a magneto hydrodynamics Casson fluid through a micro channel by taking [Formula: see text] nanoparticles. The combined effects of temperature jump, porous medium and velocity slip are incorporated. Using the dimensionless variables one can obtain the governing differential equations thereafter resolved numerically using RKF45 method. The velocity, temperature, skin friction and Nusselt number coefficient are addressed for different pertaining parameter. The upshots of the current investigation are visualized through graphically elucidation. Out comes shows that larger values of solid volume fraction decreases both velocity and temperature field. Furthermore drag coefficient is increases for increase in magnetic parameter, also hybrid nanofluid gives more impact than nanofluid.


2005 ◽  
Author(s):  
Sergio D. Felicelli ◽  
David R. Poirier

A finite element model for simulating dendritic solidification of multicomponent-alloy castings is used to study the filling and solidification of castings of thin cross section. The model solves the conservation equations of mass, momentum, energy, and alloy components and couples the solution with the thermodynamic of the multicomponent alloy through a phase diagram equation. The transport of mass and energy in the mushy zone is done considering the mushy zone as a porous medium of variable porosity. The same set of conservations equations are used for the liquid, solid and mushy zones, in which the volume fraction of liquid acts as the variable that makes the equations transition continuously from one zone to another (Felicelli et al. [1]). During filling, the model tracks the advancing front as the metal flows into the thin mold, and solidification is calculated as the metal loses energy by convection and radiation to the mold, including the dynamic calculation of view factors. The code supports two fluid models that emulate the flow behavior under equiaxed or columnar solidification. In the former case a slurry fluid model is used in which the viscosity is determined by the volume fraction of solid. In this slurry state, the solid and liquid move at the same velocity. For the case of columnar solidification, the solid is fixed and the liquid flows through a porous structure of dendrictic solid. The model development is based on the work by Felicelli et al. [2], to which several features were added, including a front-tracking technique (Gao [3]) and thermal radiation boundary conditions. Calculations for Ni and Al alloys were performed to illustrate the effect of several physical and operation parameters in the filling of a horizontal channel of thin thickness. A wide range of process parameters was tested in order to determine how much of the channel length could be filled before blockage of flow by solidification occurred. In a separate section, the effect of alloy concentration on the fluidity was studied using a Pb-Sn hypoeutectic system, and the importance that the dendrite breaking phenomenon can have on the results is shown. Conclusions about the parameters that most influence the filling process are presented, as well as recommendations on which experimental data are more critical in order to conduct a proper validation of this type of models.


2017 ◽  
Vol 826 ◽  
pp. 918-941 ◽  
Author(s):  
A. Bougouin ◽  
L. Lacaze ◽  
T. Bonometti

Experiments on the collapse of non-colloidal and neutrally buoyant particles suspended in a Newtonian fluid column are presented, in which the initial volume fraction of the suspension $\unicode[STIX]{x1D719}$, the viscosity of the interstitial fluid $\unicode[STIX]{x1D707}_{f}$, the diameter of the particles $d$ and the mixing protocol, i.e. the initial preparation of the suspension, are varied. The temporal evolution of the slumping current highlights two main regimes: (i) an inertial-dominated regime followed by (ii) a viscous-dominated regime. The inertial regime is characterized by a constant-speed slumping which is shown to scale as in the case of a classical inertial dam-break. The viscous-dominated regime is observed as a decreasing-speed phase of the front evolution. Lubrication models for Newtonian and power-law fluids describe most of situations encountered in this regime, which strongly depends on the suspension parameters. The temporal evolution of the propagating front is used to extract the rheological parameters of the fluid models. At the early stages of the viscous-dominated regime, a constant effective shear viscosity, referred to as an apparent Newtonian viscous regime, is found to depend only on $\unicode[STIX]{x1D719}$ and $\unicode[STIX]{x1D707}_{f}$ for each mixing protocol. The obtained values are shown to be well fitted by the Krieger–Dougherty model whose parameters involved, say a critical volume fraction $\unicode[STIX]{x1D719}_{m}$ and the exponent of divergence, depend on the mixing protocol, i.e. the microscale interaction between particles. On a longer time scale which depends on $\unicode[STIX]{x1D719}$, the front evolution is shown to slightly deviate from the apparent Newtonian model. In this apparent non-Newtonian viscous regime, the power-law model, indicating both shear-thinning and shear-thickening behaviours, is shown to be more appropriate to describe the front evolution. The present experiments indicate that the mixing protocol plays a crucial role in the selection of a shear-thinning or shear-thickening type of collapse, while the particle diameter $d$ and volume fraction $\unicode[STIX]{x1D719}$ play a significant role in the shear-thickening case. In all cases, the normalized effective consistency of the power-law fluid model is found to be a unique function of $\unicode[STIX]{x1D719}$. Finally, an apparent viscoplastic regime, characterized by a finite length spreading reached at finite time, is observed at high $\unicode[STIX]{x1D719}$. This regime is mostly observed for volume fractions larger than $\unicode[STIX]{x1D719}_{m}$ and up to a volume fraction $\unicode[STIX]{x1D719}_{M}$ close to the random close packing fraction at which the initial column remains undeformed on opening the gate.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 532 ◽  
Author(s):  
Muhammad Mubashir Bhatti ◽  
Asmaa F. Elelamy ◽  
Sadiq M. Sait ◽  
Rahmat Ellahi

This study deals with the mass transport phenomena on the particle-fluid motion through an annulus. The non-Newtonian fluid propagates through a ciliated annulus in the presence of two phenomenon, namely (i) endoscopy, and (ii) blood clot. The outer tube is ciliated. To examine the flow behavior we consider the bi-viscosity fluid model. The mathematical modeling has been formulated for small Reynolds number to examine the inertia free flow. The purpose of this assumption is that wavelength-to-diameter is maximal, and the pressure could be considerably uniform throughout the entire cross-section. The resulting equations are analytically solved, and exact solutions are given for particle- and fluid-phase profiles. Computational software Mathematica has been used to evaluate both the closed-form and numerical results. The graphical behavior across each parameter has been discussed in detail and presented with graphs. The trapping mechanism is also shown across each parameter. It is noticed clearly that particle volume fraction and the blood clot reveal converse behavior on fluid velocity; however, the velocity of the fluid reduced significantly when the fluid behaves as a Newtonian fluid. Schmidt and Soret numbers enhance the concentration mechanism. Furthermore, more pressure is required to pass the fluid when the blood clot appears.


Author(s):  
Sadia Haider ◽  
Atta Ullah ◽  
Adnan Hamid

Abstract Numerical Simulations are performed, using Eulerian two fluid model (TFM) to investigate the effects of solid volume fraction and no-slip side walls on the settling particles. It is found that average settling velocity decreases with increasing volume fraction for both gas-solid (GS) and liquid-solid (LS) systems, in good agreement with the Richardson-Zaki 1 − ϕ n ${\left(1-\phi \right)}^{n}$ law. It was also noted that average velocity is independent of the boundary condition for both gas-solid (GS) and liquid-solid (LS) systems. The root mean square value of the solid volume fraction shows the increasing trend with volume fraction, caused by the many particle interactions. Furthermore, no-slip sidewalls were found to damp the velocity fluctuations quantitively, while following the well-known ϕ 1 / 2 ${\phi }^{1/2}$ scaling with volume fraction. Side walls were found to act as kinetic trap for the particles, damping the fluctuation near the walls and plateauing in the mid plane. These simulations showed that the GS system shows the higher solid fraction fluctuations that the LS system at the same Reynolds number, mainly because of the higher collision frequency (higher Stokes number) among the particles.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 296 ◽  
Author(s):  
Dianchen Lu ◽  
Muhammad Ramzan ◽  
Mutaz Mohammad ◽  
Fares Howari ◽  
Jae Dong Chung

This study aims to scrutinize the thin film flow of a nanofluid comprising of carbon nanotubes (CNTs), single and multi-walled i.e., (SWCNTs and MWCNTs), with Cattaneo-Christov heat flux and entropy generation. The time-dependent flow is supported by thermal radiation, variable source/sink, and magneto hydrodynamics past a linearly stretched surface. The obtained system of equations is addressed by the numerical approach bvp4c of the MATLAB software. The presented results are validated by comparing them to an already conducted study and an excellent synchronization in both results is achieved. The repercussions of the arising parameters on the involved profiles are portrayed via graphical illustrations and numerically erected tables. It is seen that the axial velocity decreases as the value of film thickness parameter increases. It is further noticed that for both types of CNTs, the velocity and temperature distributions increase as the solid volume fraction escalates.


2012 ◽  
Vol 510 ◽  
pp. 790-794
Author(s):  
Hui Sun ◽  
Zhi Yong Zhou

The Eulerian two-fluid model incorporated with the multiple reference frame approach is adopted to predict the gas-liquid two-phase flow in the novel combined top and corner spray degassing tank for aluminum melt. The influence of different parameters, such as gas velocity or hole areas at the tank corners on the gas-liquid flow behavior is also investigated. Results show that little gas emerges near the wall of tank equipped with traditional rotating spray degasser. Using the combined top and corner spray degasser, the distribution of bubbles in the tank, especially near the tank wall, is improved significantly, which advantages the hydrogen removal. With the increasing gas velocity or hole areas at the tank corners, the width of ring zone with low gas volume fraction decreases, and thus enhances the effect of hydrogen removal.


Author(s):  
Fazia Aiche ◽  
Salah Belaadi ◽  
Adel Lalaoua ◽  
Abdallah Sofiane Berrouk ◽  
Abdelwahid Azzi

Fluidized beds are widely used in many industrial processes as they ensure the desirable high-intensity heat and mass transfers between gas and particles and offer the possibility to perform operations in a continuous mode and powders recycling. Some of these industrial processes use Geldart D type of powders and operate in the slugging mode. This paper presents a 3 D numerical model of gas-solid flows in a fluidized bed based on the Two-Fluid Model (TFM). Turbulence modeling (k- ε) was used to predict flow behavior in fluidized bed of Geldart D particles. The solid phase consists of Geldart D powders and the gas flow is in a slug regime. The numerical results are validated against the experimental work of Azzi et al. Model predictions on flow patterns, bed expansion, volume fraction time series and pressure drop fluctuations are presented and discussed in details in order to demonstrate the cyclic process of slug formation (onset, growth, rising and bursting of slugs) and its effects on the overall performance of beds fluidizing Geldart D type of powders.


Sign in / Sign up

Export Citation Format

Share Document