Modeling of Solidification and Filling of Thin-Section Castings

2005 ◽  
Author(s):  
Sergio D. Felicelli ◽  
David R. Poirier

A finite element model for simulating dendritic solidification of multicomponent-alloy castings is used to study the filling and solidification of castings of thin cross section. The model solves the conservation equations of mass, momentum, energy, and alloy components and couples the solution with the thermodynamic of the multicomponent alloy through a phase diagram equation. The transport of mass and energy in the mushy zone is done considering the mushy zone as a porous medium of variable porosity. The same set of conservations equations are used for the liquid, solid and mushy zones, in which the volume fraction of liquid acts as the variable that makes the equations transition continuously from one zone to another (Felicelli et al. [1]). During filling, the model tracks the advancing front as the metal flows into the thin mold, and solidification is calculated as the metal loses energy by convection and radiation to the mold, including the dynamic calculation of view factors. The code supports two fluid models that emulate the flow behavior under equiaxed or columnar solidification. In the former case a slurry fluid model is used in which the viscosity is determined by the volume fraction of solid. In this slurry state, the solid and liquid move at the same velocity. For the case of columnar solidification, the solid is fixed and the liquid flows through a porous structure of dendrictic solid. The model development is based on the work by Felicelli et al. [2], to which several features were added, including a front-tracking technique (Gao [3]) and thermal radiation boundary conditions. Calculations for Ni and Al alloys were performed to illustrate the effect of several physical and operation parameters in the filling of a horizontal channel of thin thickness. A wide range of process parameters was tested in order to determine how much of the channel length could be filled before blockage of flow by solidification occurred. In a separate section, the effect of alloy concentration on the fluidity was studied using a Pb-Sn hypoeutectic system, and the importance that the dendrite breaking phenomenon can have on the results is shown. Conclusions about the parameters that most influence the filling process are presented, as well as recommendations on which experimental data are more critical in order to conduct a proper validation of this type of models.

Author(s):  
Lajos Szalmas ◽  
Dimitris Valougeorgis ◽  
Stephane Colin

Binary gas flows driven by pressure gradient through short microtubes are studied by using an upgraded version of the Direct Simulation Monte Carlo (DSMC) method. Two types of mixtures, He/Xe and Ne/Ar, are examined. Several values of the channel length to radius ratio, the downstream to upstream pressure ratio and a wide range of the gas rarefaction are considered. Results are presented for the species and total flow rates and for the axial distributions of the macroscopic quantities. There is a pronounced difference of the flow behavior of the two mixtures due to the different molecular mass ratios. The flow rate of the He/Xe mixture for very short channels and large pressure drops is increased with increasing gas rarefaction, while the flow rate of the Ne/Ar mixture shows a different rarefaction dependence. The obtained results can be useful in optimal design of microfluidic or vacuum devices.


1999 ◽  
Vol 578 ◽  
Author(s):  
Andreas N. Alexandrou ◽  
Gilmer R. Burgos ◽  
Vladimir M. Entov

AbstractUnderstanding the time-dependent flow behavior of metal alloys in semisolid state is essential for the further development of the process. In the present investigation, the thixotropic behavior of semisolid slurries is modeled using conservation equations and the Herschel-Bulkley fluid model. The rheological parameters are assumed to be functions of the solid volume fraction, and of a structural parameter that changes with processing history. The evolution of the structural parameter is described by a first order kinetic differential equation that relates the rate of build-up and break-down of the solid skeleton. The model is implemented into a computer code to predict die filling.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 532 ◽  
Author(s):  
Muhammad Mubashir Bhatti ◽  
Asmaa F. Elelamy ◽  
Sadiq M. Sait ◽  
Rahmat Ellahi

This study deals with the mass transport phenomena on the particle-fluid motion through an annulus. The non-Newtonian fluid propagates through a ciliated annulus in the presence of two phenomenon, namely (i) endoscopy, and (ii) blood clot. The outer tube is ciliated. To examine the flow behavior we consider the bi-viscosity fluid model. The mathematical modeling has been formulated for small Reynolds number to examine the inertia free flow. The purpose of this assumption is that wavelength-to-diameter is maximal, and the pressure could be considerably uniform throughout the entire cross-section. The resulting equations are analytically solved, and exact solutions are given for particle- and fluid-phase profiles. Computational software Mathematica has been used to evaluate both the closed-form and numerical results. The graphical behavior across each parameter has been discussed in detail and presented with graphs. The trapping mechanism is also shown across each parameter. It is noticed clearly that particle volume fraction and the blood clot reveal converse behavior on fluid velocity; however, the velocity of the fluid reduced significantly when the fluid behaves as a Newtonian fluid. Schmidt and Soret numbers enhance the concentration mechanism. Furthermore, more pressure is required to pass the fluid when the blood clot appears.


2019 ◽  
Vol 88 (1) ◽  
pp. 11101 ◽  
Author(s):  
Mahdi Benzema ◽  
Youb Khaled Benkahla ◽  
Ahlem Boudiaf ◽  
Sief-Eddine Ouyahia ◽  
Mohammed El Ganaoui

Numerical study for the effect of an external magnetic field on the mixed convection of Al2O3–water Newtonian nanofluid in a right-angle vented trapezoidal cavity was performed using the finite volume method. The non-homogeneous Buongiorno model is applied for numerical description of the dynamic phenomena inside the cavity. The nanofluid, with low temperature and high concentration, enters the cavity through the upper open border, and is evacuated through opening placed at the right end of the bottom wall. The cavity is heated from the inclined wall, while the remainder walls are adiabatic and impermeable to both the base fluid and nanoparticles. After validation of the model, the analysis was carried out for a wide range of Hartmann number (0 ≼ Ha ≼ 100) and nanoparticles volume fraction (0 ≼ ϕ0 ≼ 0.06). The flow behavior as well as the temperature and nanoparticles distribution shows a particular sensitivity to the variations of both the Hartmann number and the nanofluid concentration. The domination of conduction mechanism at high Hartmann numbers reflects the significant effect of Brownian diffusion which tends to uniform the distribution of nanoparticles in the domain. The average Nusselt number which increases with the nanoparticles addition, depends strongly on the Hartmann number. Finally, a correlation predicting the average Nusselt number within such geometry as a function of the considered parameters is proposed.


2012 ◽  
Vol 510 ◽  
pp. 790-794
Author(s):  
Hui Sun ◽  
Zhi Yong Zhou

The Eulerian two-fluid model incorporated with the multiple reference frame approach is adopted to predict the gas-liquid two-phase flow in the novel combined top and corner spray degassing tank for aluminum melt. The influence of different parameters, such as gas velocity or hole areas at the tank corners on the gas-liquid flow behavior is also investigated. Results show that little gas emerges near the wall of tank equipped with traditional rotating spray degasser. Using the combined top and corner spray degasser, the distribution of bubbles in the tank, especially near the tank wall, is improved significantly, which advantages the hydrogen removal. With the increasing gas velocity or hole areas at the tank corners, the width of ring zone with low gas volume fraction decreases, and thus enhances the effect of hydrogen removal.


Author(s):  
Fazia Aiche ◽  
Salah Belaadi ◽  
Adel Lalaoua ◽  
Abdallah Sofiane Berrouk ◽  
Abdelwahid Azzi

Fluidized beds are widely used in many industrial processes as they ensure the desirable high-intensity heat and mass transfers between gas and particles and offer the possibility to perform operations in a continuous mode and powders recycling. Some of these industrial processes use Geldart D type of powders and operate in the slugging mode. This paper presents a 3 D numerical model of gas-solid flows in a fluidized bed based on the Two-Fluid Model (TFM). Turbulence modeling (k- ε) was used to predict flow behavior in fluidized bed of Geldart D particles. The solid phase consists of Geldart D powders and the gas flow is in a slug regime. The numerical results are validated against the experimental work of Azzi et al. Model predictions on flow patterns, bed expansion, volume fraction time series and pressure drop fluctuations are presented and discussed in details in order to demonstrate the cyclic process of slug formation (onset, growth, rising and bursting of slugs) and its effects on the overall performance of beds fluidizing Geldart D type of powders.


Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


Textiles ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 55-85
Author(s):  
Tufail Hassan ◽  
Hafsa Jamshaid ◽  
Rajesh Mishra ◽  
Muhammad Qamar Khan ◽  
Michal Petru ◽  
...  

Recently, very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications due to their environmentally friendly nature, low cost, and good acoustic absorption capability. However, there are still challenges for researchers to improve the mechanical and acoustic properties of natural fiber composites. In contrast, synthetic fiber-based composites have good mechanical properties and can be used in a wide range of structural and automotive applications. This review aims to provide a short overview of the different factors that affect the acoustic properties of natural-fiber-based materials and composites. The various factors that influence acoustic performance are fiber type, fineness, length, orientation, density, volume fraction in the composite, thickness, level of compression, and design. The details of various factors affecting the acoustic behavior of the fiber-based composites are described. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation.


2021 ◽  
Vol 13 (2) ◽  
pp. 723
Author(s):  
Antti Kurvinen ◽  
Arto Saari ◽  
Juhani Heljo ◽  
Eero Nippala

It is widely agreed that dynamics of building stocks are relatively poorly known even if it is recognized to be an important research topic. Better understanding of building stock dynamics and future development is crucial, e.g., for sustainable management of the built environment as various analyses require long-term projections of building stock development. Recognizing the uncertainty in relation to long-term modeling, we propose a transparent calculation-based QuantiSTOCK model for modeling building stock development. Our approach not only provides a tangible tool for understanding development when selected assumptions are valid but also, most importantly, allows for studying the sensitivity of results to alternative developments of the key variables. Therefore, this relatively simple modeling approach provides fruitful grounds for understanding the impact of different key variables, which is needed to facilitate meaningful debate on different housing, land use, and environment-related policies. The QuantiSTOCK model may be extended in numerous ways and lays the groundwork for modeling the future developments of building stocks. The presented model may be used in a wide range of analyses ranging from assessing housing demand at the regional level to providing input for defining sustainable pathways towards climate targets. Due to the availability of high-quality data, the Finnish building stock provided a great test arena for the model development.


2015 ◽  
Vol 11 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Maher Trigui ◽  
Karim Gabsi ◽  
Walid Zneti ◽  
Suzelle Barrington ◽  
Ahmed Noureddine Helal

Abstract In this study, Bioconversion process of glucose to fructose from date syrup using Escherichia coli K12 is modeled using a commercial computational fluids dynamics (CFD) code fluent FLUENT 6.3.23 [8] which we implemented a user-defined functions (UDF) to simulate the interrelationships at play between various phases. A two phases CFD model was developed using an Eulerian – Eulerian approach to calculate the fructose volume fraction produced during time. The bioconversion process was studied as function of three initial concentration of glucose (0.14, 0.242 and 0.463gL–1), three induction time (60, 120 and 180 mn) and three inoculum volume (100, 120 and 150mL). The numerical results are compared with experimental data for bioconversion rate and show good agreement (R2= 0.894). The optimal condition of diffusion was obtained by applying an initial concentration of glucose less than 0.2gL–1 and induction time great than 100 minutes.


Sign in / Sign up

Export Citation Format

Share Document