Nucleation & Growth of Octahedral Oxide Particles in Silicon: Oxygen Ion Implantation

1985 ◽  
Vol 59 ◽  
Author(s):  
R. W. Carpenter ◽  
G. Vanderschaeve ◽  
C. J. Varkera ◽  
S. R. Wilson

ABSTRACTCzochralski silicon was implanted with oxygen at 0.4 and 3.5MeV to obtain concentrations near 1020 oxygen/cm3 in the implanted region. Following implantation the wafers were aged at about 1000°C for 7 hours, and the resulting precipitates were examined by HREM. A high density of octahedral SiOx precipitates (∼1015/cm3) was the dominant morphology. Plate type precipitates and dislocations were also present at lower density. The data indicate octahedra grow from the plates.

1993 ◽  
Vol 308 ◽  
Author(s):  
S. Bader ◽  
P.A. Flinn ◽  
E. Arzt ◽  
W.D. Nix

ABSTRACTFinely dispersed, stable Al-oxide particles were produced in Al films on Si substrates by oxygen ion implantation . A laser reflow technique was employed to vary the grain structure of some of the films. Transmission electron microscopy (TEM) was used to characterize the oxide particles and the grain size in the films, and a wafer curvature technique was employed to study the influence of microstructure on the deformation properties as a function of temperature.For coarse grained laser reflowed films, ion implantation increased the strength considerably, both in compression and in tension. Weak beam TEM techniques showed that the strengthening is most likely caused by attractive interactions between dislocations and particles. As-deposited and ion implanted films showed a stable grain size of only 0.35 μm after annealing, which caused significant softening to occur in compression, especially at high temperature. However these films showed very high stresses in tension at temperatures below 130°C. In these films the presence of the oxide particles stabilizes the small grain size and this causes a weakening effect which can be attributed to diffusion controlled grain boundary relaxation mechanisms. The high tensile stresses at temperatures below 130°C can be explained by direct and indirect particle strengthening.


1993 ◽  
Vol 309 ◽  
Author(s):  
S. Bader ◽  
P.A. Flinn ◽  
E. Arzt ◽  
W.D. Nix

AbstractFinely dispersed, stable Al-oxide particles were produced in Al films on Si substrates by oxygen ion implantation. A laser reflow technique was employed to vary the grain structure of some of the films. Transmission electron microscopy (TEM) was used to characterize the oxide particles and the grain size in the films, and a wafer curvature technique was employed to study the influence of microstructure on the deformation properties as a function of temperature.For coarse grained laser reflowed films, ion implantation increased the strength considerably, both in compression and in tension. Weak beam TEM techniques showed that the strengthening is most likely caused by attractive interactions between dislocations and particles. As-deposited and ion implanted films showed a stable grain size of only 0.35 μm after annealing, which caused significant softening to occur in compression, especially at high temperature. However these films showed very high stresses in tension at temperatures below 130°C. In these films the presence of the oxide particles stabilizes the small grain size and this causes a weakening effect which can be attributed to diffusion controlled grain boundary relaxation mechanisms. The high tensile stresses at temperatures below 130°C can be explained by direct and indirect particle strengthening.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


2013 ◽  
Vol 529 ◽  
pp. 407-411 ◽  
Author(s):  
Ying Zhao ◽  
Guosong Wu ◽  
Qiuyuan Lu ◽  
Jun Wu ◽  
Ruizhen Xu ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 770-771
Author(s):  
Manabu Ishimaru ◽  
Robert M. Dickerson ◽  
Kurt E. Sickafus

As the size of Si integrated circuit structures is continually reduced, interest in semiconductor-oninsulator (SOI) structures has heightened. SOI structures have already been developed for Si using oxygen ion implantation. However, the application of Si devices is limited due to the physical properties of Si. As an alternative to Si, SiC is a potentially important semiconductor for high-power, high-speed, and high-temperature electronic devices. Therefore, this material is a candidate for expanding the capabilities of Si-based technology. In this study, we performed oxygen ion implantation into bulk SiC to produce SiC-on-insulator structures. We examined the microstructures and compositional distributions in implanted specimens using transmission electron microscopy and a scanning transmission electron microscope equipped with an energy-dispersive X-ray spectrometer (STEM-EDX).Figures 1(a) and 2(a) show bright-field images of 6H-SiC implanted with 180 keV oxygen ions at 650 °C to fluences of 7xl017 and 1.4xl018 cm−2, respectively. Three regions with distinct image contrast are apparent in Figs. 1(a) and 2(a), as indicated by A, B, and C.


Sign in / Sign up

Export Citation Format

Share Document