Ion-Assisted Deposition of Silicon Epitaxial Films with High Deposition Rate Using Low Energy Silicon Ions

2000 ◽  
Vol 609 ◽  
Author(s):  
Lars Oberbeck ◽  
Thomas A. Wagner ◽  
Ralf B. Bergmann

ABSTRACTIon-assisted deposition (IAD) enables low temperature (≥ 435°C), high-rate (≤ 0.5 μm/min) epitaxial growth of silicon films. Therefore, IAD is an interesting deposition technique for microelectronic devices and thin film solar cells. The Hall-mobility of monocrystalline epitaxial layers increases with deposition temperature Tdep and reaches values comparable to those of bulk Si at Tdep ≥ 540°C. Polycrystalline epitaxial layers exhibit inhomogeneous electrical properties, as shown by Light Beam Induced Current measurements. Recombination within the grains dominates over recombination at grain boundaries. Secco etching identifies an inhomogeneous density of extended structural defects in the polycrystalline epitaxial layers and in the substrate. A major part of the extended defects in the epitaxial layers originates from defects in the substrate.

2009 ◽  
Vol 156-158 ◽  
pp. 573-578
Author(s):  
N.A. Sobolev ◽  
Kalyadin ◽  
R.N. Kyutt ◽  
Elena I. Shek ◽  
V.I. Vdovin

Structural and luminescence properties have been studied in silicon layers with dislocation-related luminescence. Multiple room temperature implantation of oxygen ions with doses low than the amorphization threshold was carried out. Silicon ions with a dose exceeding the amorphization threshold by two orders of magnitude were implanted at a higher temperature (≥ 80°C). Both the implantations were not followed by the amorphization of the implanted layers. Annealing in a chlorine-containing atmosphere resulted in formation of extended structural defects and luminescence centers. Some regularities and peculiarities in the properties of the extended defects and dislocation-related luminescence lines were revealed in dependence on the implantation and annealing conditions.


1989 ◽  
Vol 161 ◽  
Author(s):  
D.L. Dreifus ◽  
Y. Lansari ◽  
J.W. Han ◽  
S. Hwang ◽  
J.W. Cook ◽  
...  

ABSTRACTII-VI semiconductor surface passivants, insulators, and epitaxial films have been deposited onto selective surface areas by employing a new masking and lift-off technique. The II-VI layers were grown by either conventional or photoassisted molecular beam epitaxy (MBE). CdTe has been selectively deposited onto HgCdTe epitaxial layers as a surface passivant. Selective-area deposition of ZnS has been used in metal-insulator-semiconductor (MIS) structures. Low resistance ohmic contacts to p-type CdTe:As have also been realized through the use of selectively-placed thin films of the semi-metal HgTe followed by a thermal evaporation of In. Epitaxial layers of HgTe, HgCdTe, and HgTe-CdTe superlattices have also been grown in selective areas on CdZnTe substrates, exhibiting specular morphologies and double-crystal x-ray diffraction rocking curves (DCXD) with full widths at half maximum (FWHMs) as narrow as 140 arcseconds.


2002 ◽  
Vol 715 ◽  
Author(s):  
W.M.M. Kessels ◽  
P.J. van den Oever ◽  
J.P.M. Hoefnagels ◽  
J. Hong ◽  
I.J. Houston ◽  
...  

AbstractPlasma and in situ film studies have been applied to the expanding thermal plasma to obtain basic insight into the deposition of a-Si:H and μc-Si:H at high rates (> 10 Å/s). A study of the density of plasma radicals (Si, SiH, SiH3) and of the radicals' surface reactivity has revealed that SiH3 is the most important radical for the growth of both materials. In situ attenuated total reflection infrared spectroscopy and spectroscopic ellipsometry have revealed a thick interface layer and consequently long incubation time for the materials deposited at a high deposition rate.


2000 ◽  
Vol 42 (8) ◽  
pp. 1422-1426 ◽  
Author(s):  
L. M. Sorokin ◽  
A. S. Tregubova ◽  
M. P. Shcheglov ◽  
A. A. Lebedev ◽  
N. S. Savkina

1996 ◽  
Vol 423 ◽  
Author(s):  
Weida Gian ◽  
Marek Skowronski ◽  
Greg S. Rohrer

AbstractMicrostructure and extended defects in α-GaN films grown by organometallic vapor phase epitaxy on sapphire substrates using low temperature AIN (or GaN) buffer layers have been studied using transmission electron microscopy. The types and distribution of extended defects were correlated with the film growth mode and the layer nucleation mechanism which was characterized by scanning force microscopy. The nature of the extended defects was directly related to the initial three-dimensional growth. It was found that inhomogeneous nucleation leads to a grain-like structure in the buffer; the GaN films then have a columnar structure with a high density of straight edge dislocations at grain boundaries which are less likely to be suppressed by common annihilation mechanisms. Layer-by-layer growth proceeds in many individual islands which is evidenced by the observation of hexagonal growth hillocks. Each growth hillock has an open-core screw dislocation at its center which emits monolayer-height spiral steps.


2005 ◽  
Vol 862 ◽  
Author(s):  
Guozhen Yue ◽  
Gautam Ganguly ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Subhendu Guha

AbstractHydrogenated amorphous silicon (a-Si:H) solar cells incorporating high deposition rate (8-10Å/s) intrinsic layers were deposited using modified very high frequency (MVHF) plasma. We have monitored the light scattered from powder generated in the plasma using an Ar-laser and a silicon photodiode. This simple, non-invasive technique allows us to make measurements on the same reactor used to make the solar cells. First, we have varied the total flow rate and observed a maximum in the scattered light intensity from powder in the plasma during the deposition of the intrinsic layer, and correlated this with the degradation, as well as the stabilized performance of the solar cells. Then, we have studied the effects of varying the deposition temperature and/or the addition of germane to the gas mixture on the scattered light intensity due to powder in the plasma.


2018 ◽  
Vol 5 (11) ◽  
pp. 116410 ◽  
Author(s):  
C I Fornari ◽  
P H O Rappl ◽  
S L Morelhão ◽  
G Fornari ◽  
J S Travelho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document