Uniformity Control of 3-Inch GaN/InGaN Layers Grown in Planetary Reactors®

2000 ◽  
Vol 618 ◽  
Author(s):  
H. Protzmann ◽  
M. Luenenbuerger ◽  
M. Bremser ◽  
M. Heuken ◽  
H. Juergensen

ABSTRACTWe report on recent results obtained using an AIX 2400G3HT production type Planetary Reactor® in the 5×3 inch configuration for growth of typical group-III nitride layer structures consisting of GaN, InGaN and AlGaN. The optimum reactor geometry has been found by extensive modeling of the reactor design. Increased thermal management allows maximum reactor temperatures above 1400°C. As a consequence of extensive reactor modeling, the process transfer from 6×2 inch to 5×3 inch configuration was carried out by simple scaling of the corresponding process parameters of the 6×2 inch configuration. The scaling factor is calculated with respect to the changed reactor geometry. We used optical reflectrometry for in-situ growth control during this process development and could confirm the theoretical scaling requirements for obtaining identical growth conditions as compared to the 6×2 inch reactor configuration. This is verified by the generation of identical reflectance spectrum features. This important issue of in-situ control is discussed in detail. The TMGa efficiency could be kept at about 17%. Switching to the 8×3 inch configuration the efficiency increases up to about 27%, which is an improvement of 63% as compared to the 6×2 inch configuration

2001 ◽  
Vol 3 (3) ◽  
pp. 111-121 ◽  
Author(s):  
Aldo Mele ◽  
Anna Giardini ◽  
Tonia M. Di Palma ◽  
Chiara Flamini ◽  
Hideo Okabe ◽  
...  

The methods of preparation of the group III nitrides AlN, GaN, and InN by laser ablation (i.e. laser sputtering), is here reviewed including studies on their properties. The technique, concerns direct ablation of nitride solid targets by laser to produce a plume which is collected on a substrate. Alternatively nitride deposition is obtained as a result of laser ablation of the metal and subsequent reaction in anNH3atmosphere. Optical multichannel emission spectroscopic analysis, and time of flight (TOF) mass spectrometry have been applied forin situidentification of deposition precursors in the plume moving from the target. Epitaxial AlN, GaN, and InN thin films on various substrates have been grown. X-ray diffraction, scanning electron microscopy, have been used to characterise thin films deposited by these methods.


Author(s):  
D. Chandrasekhar ◽  
D. J. Smith ◽  
S. Strite ◽  
M. E. Lin ◽  
H. Morkoc

The Group III-nitride semiconductors A1N, GaN, and InN are of interest for their potential applications in short wavelength optoelectronic devices. This interest stems from their direct wideband gapswhich range from 1.9 eV (InN), to 3.4 eV (GaN), to 6.2 eV (A1N). If high quality nitride films can besuccessfully grown, then optoelectronic devices with wavelengths ranging from the visible to the deepultraviolet region of the electromagnetic spectrum are theoretically possible. Recently, LED's basedon GaN and InGaN QW's were demonstrated. Also, their excellent thermal properties make them ideal candidates for high-temperature and high-power devices. Many problems plague nitride research, especiallythe lack of suitable substrate materials that are both lattice- and thermal-matched to the nitrides. The crystal structure of these materials is strongly influenced by the substrate and its orientation.For example, although the equilibrium crystal structure of these nitrides is wurtzite, zincblende phase can be nucleated under nonequilibrium growth conditions but only on cubic substrates. These zincblende nitrides represent new material systems with properties that differ from their wurtzite counterparts. Recently, good quality material has been produced employing metalorganic vapor phase epitaxy (MOVPE) and reactive molecular beam epitaxy (RMBE) techniques with incorporation of buffer layers.


2005 ◽  
Vol 275 (1-2) ◽  
pp. 209-216 ◽  
Author(s):  
A. Krost ◽  
A. Dadgar ◽  
F. Schulze ◽  
J. Bläsing ◽  
G. Strassburger ◽  
...  

1997 ◽  
Vol 492 ◽  
Author(s):  
J. Fritsch ◽  
O. F. Sankey ◽  
K. E. Schmidt ◽  
J. B. Page

ABSTRACTWe use a local-orbital formalism based on density-functional theory to investigate the stoichiometry and structure of the cation- and anion-terminated (0001) surfaces of wurtzite-phase GaN and A1N. We compare the total energies computed for various p(2×2) reconstructions. First-layer atom deficient structures such as vacancies are found to be the most stable configurations for the anion- and cation-terminated surfaces. For metal rich growth conditions our calculations favor the adsorption of metal atoms. Surface chemical reactions relevant for the growth of thin nitride films, such as the adsorption of hydrogen and nitrogen from decomposed ammonia, are discussed. We determine the total energy differences for the co-adsorption of NH2 and H on different surface structures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hwan-Seop Yeo ◽  
Kwanjae Lee ◽  
Young Chul Sim ◽  
Seoung-Hwan Park ◽  
Yong-Hoon Cho

Abstract Optical polarization is an indispensable component in photonic applications, the orthogonality of which extends the degree of freedom of information, and strongly polarized and highly efficient small-size emitters are essential for compact polarization-based devices. We propose a group III-nitride quantum wire for a highly-efficient, strongly-polarized emitter, the polarization anisotropy of which stems solely from its one-dimensionality. We fabricated a site-selective and size-controlled single quantum wire using the geometrical shape of a three-dimensional structure under a self-limited growth mechanism. We present a strong and robust optical polarization anisotropy at room temperature emerging from a group III-nitride single quantum wire. Based on polarization-resolved spectroscopy and strain-included 6-band k·p calculations, the strong anisotropy is mainly attributed to the anisotropic strain distribution caused by the one-dimensionality, and its robustness to temperature is associated with an asymmetric quantum confinement effect.


1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


2016 ◽  
Vol 6 (2) ◽  
pp. Q3067-Q3070 ◽  
Author(s):  
J. D. Greenlee ◽  
A. Nath ◽  
T. J. Anderson ◽  
B. N. Feigelson ◽  
A. D. Koehler ◽  
...  

2004 ◽  
Vol 1 (8) ◽  
pp. 2210-2227 ◽  
Author(s):  
M. Hermann ◽  
E. Monroy ◽  
A. Helman ◽  
B. Baur ◽  
M. Albrecht ◽  
...  

1998 ◽  
Vol 189-190 ◽  
pp. 435-438 ◽  
Author(s):  
Hiroshi Harima ◽  
Toshiaki Inoue ◽  
Shin-ichi Nakashima ◽  
Hajime Okumura ◽  
Yuuki Ishida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document