In vitro Apatite Deposition and Biodegradation of Porous Gelatin-Silicate Hybrids Derived from Sol-Gel Process

2000 ◽  
Vol 628 ◽  
Author(s):  
Lei Ren ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka

ABSTRACTCa (II) containing porous hybrids of gelatin and 3-(glycidoxypropyl) trimethoxysilane (GPSM) were prepared with sol-gel processing and freeze-drying techniques. The freezing temperature could control porosity and pore size of the hybrids. The biodegradation rate of the hybrids in a Tris buffer solution decreased with an increase in GPSM content. The bone-like apatite layer could form on the Ca (II) containing porous gelatin-silicate hybrids when they were soaked in a stimulated body fluid (SBF), hence they were applicable to be the bioactive scaffolds for bone tissue engineering.

2006 ◽  
Vol 111 ◽  
pp. 13-18 ◽  
Author(s):  
Lei Ren ◽  
Akiyoshi Osaka ◽  
B. Yu ◽  
Wei Shi ◽  
Dong Tao Ge ◽  
...  

Ca2+-containing porous gelatin-siloxane hybrids were prepared using sol-gel process, post-gelation soaking, and freeze-drying. The porosity and pore size of the hybrids could be well controlled by the freezing temperature and the pH value of the soaking solution. The pore characteristics were related to the structure change during the soaking treatment. A bone-like apatite layer was able to form in the Ca2+-containing porous gelatin-siloxane hybrids upon soaking in a stimulated body fluid. The porous gelatin-siloxane hybrids could release gentamicin sulfate which is an antibiotic drug in bone chemotherapy. Thus, those hybrid materials are proposed to find application as novel bioactive and biodegradable scaffolds in bone tissue engineering.


2008 ◽  
Vol 116 (1349) ◽  
pp. 56-62 ◽  
Author(s):  
Ill-Yong KIM ◽  
Masanobu KAMITAKAHARA ◽  
Giichiro KAWACHI ◽  
Koichi KIKUTA ◽  
Sung-Baek CHO ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Georgios S. Theodorou ◽  
Eleana Kontonasaki ◽  
Anna Theocharidou ◽  
Athina Bakopoulou ◽  
Maria Bousnaki ◽  
...  

Glass-ceramic scaffolds containing Mg have shown recently the potential to enhance the proliferation, differentiation, and biomineralization of stem cells in vitro, property that makes them promising candidates for dental tissue regeneration. An additional property of a scaffold aimed at dental tissue regeneration is to protect the regeneration process against oral bacteria penetration. In this respect, novel bioactive scaffolds containing Mg2+and Cu2+or Zn2+, ions known for their antimicrobial properties, were synthesized by the foam replica technique and tested regarding their bioactive response in SBF, mechanical properties, degradation, and porosity. Finally their ability to support the attachment and long-term proliferation of Dental Pulp Stem Cells (DPSCs) was also evaluated. The results showed that conversely to their bioactive response in SBF solution, Zn-doped scaffolds proved to respond adequately regarding their mechanical strength and to be efficient regarding their biological response, in comparison to Cu-doped scaffolds, which makes them promising candidates for targeted dental stem cell odontogenic differentiation and calcified dental tissue engineering.


1996 ◽  
Vol 431 ◽  
Author(s):  
C. K. Narula

AbstractThe high cost of materials prepared by sol-gel processing and the loss of useful surface properties at elevated temperature has prevented the application of sol-gel processed materials in automotive exhaust reduction catalyst formulations. In this report, we briefly describe the important developments needed in the next generation automotive catalysts and the role of sol-gel processed materials. We will also discuss the application of heterometallic alkoxides as sol-gel precursors to achieve the molecular distribution of lanthanides and alkaline earths in alumina matrices needed for the stabilization of alumina based materials at elevated temperatures.


2004 ◽  
Vol 449-452 ◽  
pp. 1121-1124 ◽  
Author(s):  
Do Won Seo ◽  
J.G. Kim ◽  
Yun Hae Kim ◽  
Chin Myung Whang

Bioactive ORMOSILS (organically modified silicate), PDMS-CaO-SiO2-P2O5 with five different P2O5 content (0, 0.01, 0.03, 0.06, 0.09 mol%) have successfully been synthesized by sol-gel process. The hybrids have been prepared with polydimethylsiloxane (PDMS), tetraethoxysilane (TEOS), calcium nitrate tetrahydrate [Ca(NO3)2 4H2O] and triethyl phosphate (TEP) as starting materials and subsequently soaked into the simulated body fluid (SBF) for different period of time and the bioactivity of hybrids was determined by examining the apatite formation on the surface of the specimen by FT-IR, Thin-Film X-ray Diffraction, and Scanning Electron Microscopy (SEM). All of the prepared samples with different P2O5 content showed in vitro bioactivity. It was observed that the increase in P2O5 content up to 0.03 mole % increases the apatite formation compared to P2O5- free hybrids. However, further increase in P2O5 concentration slows down the formation of the apatite layer most probably due to the decrease of pH of SBF by dissolution of a large amount of phosphate ions.


2008 ◽  
Vol 47-50 ◽  
pp. 1319-1322
Author(s):  
Yang Zhao ◽  
Pei Yin ◽  
Zu Yong Wang ◽  
Lei Ren ◽  
Qi Qing Zhang

Novel hybrid biomaterial of gelatin-siloxane nanoparticles (GS NPs), with positive surface potential and lower cytotoxicity, was synthesized through a 2-step sol-gel process. The pDNA-GS NPs complex was formulated with high encapsulation efficiency, and exhibited and efficient transfection in vitro. We thus envision that the GS NPs material could serve as non-viral gene vectors for gene therapy.


2022 ◽  
Vol 964 (1) ◽  
pp. 012033
Author(s):  
Hieu M Nguyen ◽  
Khoi A Tran ◽  
Tram T N Nguyen ◽  
Nga N H Do ◽  
Kien A Le ◽  
...  

Abstract Coir, known as coconut fibers, are an abundant cellulosic source in Vietnam, which are mostly discarded when copra and coconut water are taken, causing environmental pollution and waste of potential biomass. In this research, carbon aerogels from chemically pretreated coir were successfully synthesized via simple sol-gel process with NaOH-urea solution, economical freeze-drying, and carbonization. The samples, including pretreated coir, coir aerogels, and carbon aerogels, are characterized using FTIR spectroscopy, SEM, XRD spectroscopy, and TGA. The carbon aerogels exhibit low density (0.034–0.047 g/cm3), high porosity (97.63–98.32 %), and comparable motor oil sorption capacity (22.71 g/g). The properties of carbon aerogels are compared with those of coir aerogels, indicating such better values than those of coir aerogels. Coir-derived carbon aerogels is a potential replacement for the hydrophobically-coated cellulose aerogels in term of treating oil spills.


Sign in / Sign up

Export Citation Format

Share Document