scholarly journals Misfit Dislocations in Epitaxial Ni/Cu Bilayer and Cu/Ni/Cu Trilayer Thin Films

2001 ◽  
Vol 673 ◽  
Author(s):  
Tadashi Yamamoto ◽  
Amit Misra ◽  
Richard G. Hoagland ◽  
Mike Nastasi ◽  
Harriet Kung ◽  
...  

ABSTRACTMisfit dislocations at the interfaces of bilayer (Ni/Cu) and trilayer (Cu/Ni/Cu) thin films were examined by plan-view transmission electron microscopy (TEM). In the bilayers, the spacing of misfit dislocations was measured as a function of Ni layer thickness. The critical thickness, at which misfit dislocations start to appear with the loss of coherency, was found to be between 2 and 5 nm. The spacing of the misfit dislocations decreased with increasing Ni layer thickness and reached a plateau at the thickness of 30 nm. The minimum spacing is observed to be about 20 nm. A g·b analysis of the cross-grid of misfit dislocations revealed 90° Lomer dislocations of the <110>{001} type lying in the (001) interface plane at a relatively large thickness of the Ni layer, but 60° glide dislocations of the <110>{111} type at a relatively small thickness of the Ni layer. In the trilayers, misfit dislocations formed at both interfaces. The spacing of the misfit dislocation is in agreement with that of the bilayers with a similar Ni layer thickness. The misfit dislocation arrays at the two interfaces, having the same line directions, are 60° dislocations with edge components with opposite signs but are displaced with respect to each other in the two different interface planes. This suggests that interactions of the strain fields of the dislocations have a strong influence on their positions at the interface.

2003 ◽  
Vol 779 ◽  
Author(s):  
Hyung Seok Kim ◽  
Sang Ho Oh ◽  
Ju Hyung Suh ◽  
Chan Gyung Park

AbstractMechanisms of misfit strain relaxation in epitaxially grown Bi4-xLaxTi3O12 (BLT) thin films deposited on SrTiO3 (STO) and LaAlO3 (LAO) substrates have been investigated by means of transmission electron microscopy (TEM). The misfit strain of 20 nm thick BLT films grown on STO substrate was relaxed by forming misfit dislocations at the interface. However, cracks were observed in 100 nm thick BLT films grown on the same STO. It was confirmed that cracks were formed because of high misfit strain accumulated with increasing the thickness of BLT, that was not sufficiently relaxed by misfit dislocations. In the case of the BLT film grown on LAO substrate, the magnitude of lattice misfit between BLT and LAO was very small (~1/10) in comparison with the case of the BLT grown on STO. The relatively small misfit strain formed in layered structure of the BLT films on LAO, therefore, was easily relaxed by distorting the film, rather than forming misfit dislocations or cracks, resulting in misorientation regions in the BLT film.


1997 ◽  
Vol 474 ◽  
Author(s):  
L. Zhao ◽  
A. T. Chien ◽  
F. F. Lange ◽  
J. S. Speck

ABSTRACTThe structure of epitaxial BaTiO3 thin films prepared by hydrothermal synthesis on (001) SrTiO3 substrates was studied by transmission electron microscopy (TEM). The growth evolution was followed from initial island formation, through island impingement and fusion. Plan view and cross-section imaging demonstrated that the films grew by an unusual islanding mechanism. Electron diffraction showed the islands and the fully formed film are single crystal with mosaic character and in all cases strain relaxed. Cross-section TEM of the early growth films showed a several monolayer thick interfacial layer and the film/substrate region had no misfit dislocations. In the fully formed films, this interfacial layer was not observed, however a clear misfit dislocation network was observed. Defects analysis shows that the misfit dislocations have pure edge character with <100> Une directions, and <010> Burgers vectors (parallel to the film/substrate interface).


1994 ◽  
Vol 340 ◽  
Author(s):  
Y. Chen ◽  
X. Liu ◽  
E. Weber ◽  
E. D. Bourret ◽  
D. J. Olego ◽  
...  

ABSTRACTStudies of the structure and electrical properties of regular and irregular misfit dislocations in undoped and N-doped ZnSe epilayers grown on GaAs(001) substrates by transmission electron microscopy (TEM), cathodoluminescence (CL) are reported. In undoped ZnSe epilayers, two sets of misfit dislocation arrays were observed: a straight orthogonal array along [110] and, and an irregular array roughly along [100] and [010] directions. The CL observations suggest that the irregular dislocations trap carriers more efficiently than the dislocations along <110>, possibly due to the high density of kinks existing along the zig-zag irregular dislocations. These irregular dislocations can be eliminated by doping nitrogen in the ZnSe epilayer with [N]≥l×1018 cm−3.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2658
Author(s):  
Krzysztof Szymkiewicz ◽  
Jerzy Morgiel ◽  
Łukasz Maj ◽  
Małgorzata Pomorska

Plasma nitriding of titanium alloys is capable of effective surface hardening at temperatures significantly lower than gas nitriding, but at a cost of much stronger surface roughening. Especially interesting are treatments performed at the lower end of the temperature window used in such cases, as they are least damaging to highly polished parts. Therefore identifying the most characteristic defects is of high importance. The present work was aimed at identifying the nature of pin-point bumps formed at the glow discharged plasma nitrided Ti-6Al-7Nb alloy using plan-view scanning and cross-section transmission electron microscopy methods. It helped to establish that these main surface defects developed at the treated surface are (Ti,Al)O2 nano-whiskers of diameter from 20 nm to 40 nm, and length up to several hundreds of nanometers. The performed investigation confirmed that the surface imperfection introduced by plasma nitriding at the specified range should be of minor consequences to the mechanical properties of the treated material.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


2014 ◽  
Vol 28 (06) ◽  
pp. 1450043 ◽  
Author(s):  
Shuyun Wang ◽  
Yuanmei Gao ◽  
Tiejun Gao ◽  
Yuan He ◽  
Hui Zhang ◽  
...  

A series of Ta (4 nm)/ ZnO (t nm )/ Ni 81 Fe 19 (20 nm)/ ZnO (t nm )/ Ta (3 nm) magnetic thin films were prepared on lower experimental conditions by magnetron sputtering method. Effects of ZnO layer thickness and substrate temperature on anisotropic magnetoresistance and magnetic properties of these Ni 81 Fe 19 films have been investigated. The experiment results show that the anisotropic magnetoresistance value of the Ni 81 Fe 19 film is enhanced with the increasing of the inserted ZnO layer thickness. When the ZnO thickness is 2 nm, the anisotropic magnetoresistance value achieves the maximum. In addition, the anisotropic magnetoresistance of the Ni 81 Fe 19 film is also enhanced with the increasing of substrate temperature, and when the temperature is 450°C, the anisotropic magnetoresistance reaches the maximum. The anisotropic magnetoresistance value of 20 nm Ni 81 Fe 19 films with 2 nm ZnO layer can achieve 3.63% at 450°C which is enhanced 11.6% compare with the films without ZnO layer.


1993 ◽  
Vol 319 ◽  
Author(s):  
X. J. Ning ◽  
P. Pirouz

AbstractDespite tremendous activity during the last few decades in the study of strain relaxation in thin films grown on substrates of a dissimilar material, there are still a number of problems which are unresolved. One of these is the nature of misfit dislocations forming at the film/substrate interface: depending on the misfit, the dislocations constituting the interfacial network have predominantly either in-plane or inclined Burgers vectors. While, the mechanisms of formation of misfit dislocations with inclined Burgers vectors are reasonably well understood, this is not the case for in-plane misfit dislocations whose formation mechanism is still controversial. In this paper, misfit dislocations generated to relax the strains caused by diffusion of boron into silicon have been investigated by plan-view and crosssectional transmission electron microscopy. The study of different stages of boron diffusion shows that, as in the classical model of Matthews, dislocation loops are initially generated at the epilayer surface. Subsequently the threading segments expand laterally and lay down a segment of misfit dislocation at the diffuse interface. The Burgers vector of the dislocation loop is inclined with respect to the interface and thus the initial misfit dislocations are not very efficient. However, as the diffusion proceeds, non-parallel dislocations interact and give rise to product segments that have parallel Burgers vectors. Based on the observations, a model is presented to elucidate the details of these interactions and the formation of more efficient misfit dislocations from the less-efficient inclined ones.


1992 ◽  
Vol 263 ◽  
Author(s):  
A.E.M. de Veirman ◽  
F. Hakkens ◽  
W. Coene ◽  
F.J.A. Den Broeder

ABSTRACTThe results of a transmission electron microscopy study of Co/Au and Co/Pd multilayers are reported. Special emphasis is put on the epitaxial growth and the relaxation of the misfit strain of these high misfit systems. In bright-field cross-sectional images, periodic contrast fringes are observed at the interfaces, which are the result of Moiré interference and which allow determination of the degree of misfit relaxation at the interface. It was established that 80-85% of the misfit is relaxed. From high resolution electron microscopy images the Burgers vector of the misfit dislocations was derived, being a/2<110> lying in the (111) interface plane. The results obtained for the Co/Au and Co/Pd multilayers will be discussed in comparison with those obtained for a bilayer of Co and Au.


2005 ◽  
Vol 891 ◽  
Author(s):  
Junqing Q. Xie ◽  
J. W. Dong ◽  
A. Osinsky ◽  
P. P. Chow ◽  
Y. W. Heo ◽  
...  

ABSTRACTZnO thin films have been epitaxially grown on r-plane sapphire by RF-plasma-assisted molecular beam epitaxy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies indicate that the epitaxial relationship between ZnO and r-plane sapphire is (1120)ZnO // (1102)sapphire and [0001]ZnO // [1101]sapphire. Atomic force microscopy measurements reveal islands extended along the sapphire [1101] direction. XRD omega rocking curves for the ZnO (1120) reflection measured either parallel or perpendicular to the island direction suggest the defect density anisotropy along these directions. Due to the small lattice mismatch along the ZnO [0001] direction, few misfit dislocations were observed at the ZnO/Al2O3 interface in the high-resolution cross-sectional TEM image with the zone axis along the ZnO [1100] direction.


1997 ◽  
Vol 12 (1) ◽  
pp. 161-174 ◽  
Author(s):  
W. Staiger ◽  
A. Michel ◽  
V. Pierron-Bohnes ◽  
N. Hermann ◽  
M. C. Cadeville

We find that the [Ni3.2nmPt1.6nm] × 15 and [Ni3.2nmPt0.8nm] × 15 multilayers are semicoherent and display a columnar morphology. From both the period of the moir’e fringes and the positions of the diffraction peaks in electronic (plan-view and crosssection geometries) and x-ray diffraction patterns, one deduces that the nickel is relaxed (at least in the error bars of all our measurements), whereas the platinum remains slightly strained (≈−1%). The interfaces are sharp; no intermixing takes place giving rise to neat contrasts in transmission electron microscopy (TEM) and to high intensities of the superlattice peaks in the growth direction in both diffraction techniques. The relaxation of the interfacial misfit occurs partially through misfit dislocations, partially through the strain of platinum. A quasiperiodic twinning occurs at the interfaces, the stacking fault which forms the twin being the most often located at the interface Pt/Ni, i.e., when a Pt layer begins to grow on the Ni layer. The simulation of the θ/2θ superlattice peak intensities takes into account the columnar microstructure. It shows that the roughness is predominantly at medium scale with a fluctuation of about 12.5% for Ni layers and negligible for Pt layers.


Sign in / Sign up

Export Citation Format

Share Document