Defects Created by 25 keV Hydrogen Implantation in n-type GaN

2001 ◽  
Vol 693 ◽  
Author(s):  
F. D. Auret ◽  
W. E. Meyer ◽  
H. A. van Laarhoven ◽  
S. A. Goodman ◽  
M. J. Legodi ◽  
...  

AbstractWe have studied defects introduced in n-GaN during 25 keV hydrogen and 40 keV He implantation using deep level transient spectroscopy (DLTS). These measurements revealed that 25 keV hydrogen implantation introduces a complex set of electron traps, of which most are different to the defects observed after high-energy (MeV) electron and proton implantation. At least three of the defects detected after 25 keV proton implantation exhibit a metastable character in that they can be reproducibly removed and re-introduced during reverse and zero bias anneal cycles. Isochronal and isothermal annealing experiments yielded low activation energies of approximately 0.1 – 0.2 eV for both processes. By comparison, 40 keV He ion implantation introduced the same metastable defects, but in different relative concentrations.

1991 ◽  
Vol 223 ◽  
Author(s):  
K. Srikanth ◽  
J. Shenal ◽  
S. Ashok

ABSTRACTHigh-energy hydrogen ion (proton) implantation is used in Si for creating defects, while low-energy H is known for passivation of a variety of defects and impurities. We have carried out a study of low-energy (<0.4 keV) H passivation of defects produced by 100 keV H implantation. Both Schottky barrier transport and deep level transient spectroscopy measurements give evidence for self-passivation of defects produced by H.


1993 ◽  
Vol 316 ◽  
Author(s):  
J. Ravi ◽  
Yu. Erokhin ◽  
S. Koveshnikov ◽  
G.A. Rozgonyi ◽  
C.W. White

ABSTRACTThe influence of in-situ electronic perturbations on defect generation during 150 keV proton implantation into biased silicon p-n junctions has been investigated. The concentration and spatial distribution of the deep traps were characterized using a modification of the double corelation deep level transient spectroscopy technique (D-DLTS). With the in-situ electric field applied, a decrease in concentration of vacancy-related, as well as H-related, traps was observed. 500 keV He+ implantation was also performed to supplement the above studies and to differentiate any passivation effects due to hydrogen. A model based on the charge states of hydrogen and vacancies was used to explain the observed behaviour.


1998 ◽  
Vol 510 ◽  
Author(s):  
Hajime Kitagawa ◽  
Shuji Tanaka

AbstractElectrical properties of iron-related defects (IRD) introduced in n-type floating zoned (FZ) and Czochralski (CZ)-grown silicon are studied by deep level transient spectroscopy and Hall effect. Electrically active IRD have been observed for the first time in n-type CZ silicon. Enthalpy and entropy factors of electron emission rate of IRD are equivalent between those observed in CZ and FZ silicon. In-diffusion process at 1160° and isothermal annealing process at 150° also indicate the identical nature of IRD between CZ and FZ silicon, which can be understood in terms of the consecutive progress of iron-related complex-formation reactions including interstitial iron atoms (Fei) in the silicon crystal. The IRD is independent of oxygen and phosphorus atoms. Only a small fraction of Fei forms electrically ionizable complexes


1980 ◽  
Vol 2 ◽  
Author(s):  
K.L. Wang ◽  
G.P. Li ◽  
P.M. Asbeck ◽  
C.G. Kirkpatrick

ABSTRACTUncapped and Si3N4-capped annealing of GaAs grown with the horizontal Bridgman technique was investigated with deep-level transient spectroscopy. Electron trap concentration distributions were measured with a reduced noise DLTS system to ensure reliable data. Ion implantation using Se ions both prior to capping and through a Si3N4 cap was carried out. The evolution of defect energy levels and the changes in concentration distributions with anneal temperature were studied. It is concluded that the defects residing in the probed space-charge region can be annealed out with a Si3N4 cap at a temperature higher than 750 C.


1992 ◽  
Vol 279 ◽  
Author(s):  
M.-A. Trauwaert ◽  
J. Vanhellemont ◽  
E. Simoen ◽  
C. Claeys ◽  
B. Johlander ◽  
...  

ABSTRACTThe results are presented of a fundamental study of electrically active damage introduced in silicon diodes by irradiation with the fission products resulting from the decay of a 252Cf source and with high energy protons. The influence of the oxygen content of the silicon substrate and the irradiation type on the damage formation is investigated using deep level transient spectroscopy. A radiation hardening effect by interstitial oxygen is observed. Bom types of irradiation create the same dominant defect levels but with different relative densities. The identification of the induced deep levels are confirmed by isochronal annealing results.


2002 ◽  
Vol 719 ◽  
Author(s):  
Yutaka Tokuda ◽  
Hiroyuki Iwata

AbstractHydrogen implantation has been used to anneal defects produced in p-type silicon by boron implantation. Boron implantation is performed with an energy of 300 keV to a dose of 1×109 cm-2. Deep level transient spectroscopy measurements show the production of four hole traps (Ev + 0.21, 0.35, 0.50, 0.55 eV) by boron implantation. Subsequent hydrogen implantation is performed with energies of 60, 90, 120 and 150 keV to a dose of 2×1010 cm-2. Among four traps produced by boron implantation, the most significant effect of hydrogen implantation is observed on one trap (Ev + 0.50 eV). A 62% decrease in concentration is caused for this trap by hydrogen implantation with energies of 120 and 150 keV. This partial annealing is ascribed to the reaction of boron-implantation-induced defects with point defects produced by hydrogen implantation.


Sign in / Sign up

Export Citation Format

Share Document