Investigation of Defect Concentration Distributions in Ion-Implanted and Annealed GaAs

1980 ◽  
Vol 2 ◽  
Author(s):  
K.L. Wang ◽  
G.P. Li ◽  
P.M. Asbeck ◽  
C.G. Kirkpatrick

ABSTRACTUncapped and Si3N4-capped annealing of GaAs grown with the horizontal Bridgman technique was investigated with deep-level transient spectroscopy. Electron trap concentration distributions were measured with a reduced noise DLTS system to ensure reliable data. Ion implantation using Se ions both prior to capping and through a Si3N4 cap was carried out. The evolution of defect energy levels and the changes in concentration distributions with anneal temperature were studied. It is concluded that the defects residing in the probed space-charge region can be annealed out with a Si3N4 cap at a temperature higher than 750 C.

1995 ◽  
Vol 09 (23) ◽  
pp. 3099-3114
Author(s):  
I. THURZO ◽  
K. GMUCOVÁ ◽  
F. DUBECKÝ ◽  
J. DARMO

Metal-semiconductor-metal (MSM) devices prepared from crystalline undoped semi-insulating GaAs were investigated by charge deep-level transient spectroscopy (QDLTS), while exciting the devices by electrical bias pulses in dark. Unlike current concepts of the QDLTS response, thermally stimulated currents were integrated from devices with GaAs crystals thinned down to or below 200 µm and equipped with Au electrodes. Au-GaAs-Au structures on 230 µm thick crystals exhibited standard QDLTS response on either cooling or heating between 100 K and 250 K. It is concluded that a macroscopic space charge region of width ≈10−7 m is formed at the Au/GaAs interface, as the dominant energy levels became ionized. Obtained results on the peaks of the thermally stimulated charge were correlated with those of potentially identical peaks observed via optical admittance transient spectroscopy (OATS).


2011 ◽  
Vol 295-297 ◽  
pp. 777-780 ◽  
Author(s):  
M. Ajaz Un Nabi ◽  
M. Imran Arshad ◽  
Adnan Ali ◽  
M. Asghar ◽  
M. A Hasan

In this paper we have investigated the substrate-induced deep level defects in bulk GaN layers grown onp-silicon by molecular beam epitaxy. Representative deep level transient spectroscopy (DLTS) performed on Au-GaN/Si/Al devices displayed only one electron trap E1at 0.23 eV below the conduction band. Owing to out-diffusion mechanism; silicon diffuses into GaN layer from Si substrate maintained at 1050°C, E1level is therefore, attributed to the silicon-related defect. This argument is supported by growth of SiC on Si substrate maintained at 1050°C in MBE chamber using fullerene as a single evaporation source.


1987 ◽  
Vol 104 ◽  
Author(s):  
A. Ben Cherifa ◽  
R. Azoulay ◽  
G. Guillot

ABSTRACTWe have studied by means of deep level transient spectroscopy and photocapacitance measurements deep electron traps in undoped Ga1−xAlxAs of n-type grown by metalorganic chemical vapor deposition with 0≤x≤ 0.3. A dominant deep electron trap is detected in the series of alloys. Its activation energy is found at EC-0.8 eV in GaAs and it increases with x. Its concentration is found nearly independent of x. For the first time we observed for this level in the Ga1−xAlxAs alloys, the photocapacitance quenching effect typical for the EL2 defect in GaAs thus confirming clearly that EL2 is also created in MOCVD Ga1−xAlxAs.


1989 ◽  
Vol 4 (2) ◽  
pp. 241-243 ◽  
Author(s):  
Yutaka Tokuda ◽  
Nobuji Kobayashi ◽  
Yajiro Inoue ◽  
Akira Usami ◽  
Makoto Imura

The annihilation of thermal donors in silicon by rapid thermal annealing (RTA) has been studied with deep-level transient spectroscopy. The electron trap AO (Ec – 0.13 eV) observed after heat treatment at 450 °C for 10 h, which is identified with the thermal donor, disappears by RTA at 800 °C for 10 s. However, four electron traps, A1 (Ec 0.18 eV), A2 (Ec – 0.25 eV), A3 (Ec – 0.36 eV), and A4 (Ec – 0.52 eV), with the concentration of ∼1012 cm−3 are produced after annihilation of thermal donors by RTA. These traps are also observed in silicon which receives only RTA at 800 °C. This indicates that traps A1–A4 are thermal stress induced or quenched-in defects by RTA, not secondary defects resulting from annealing of thermal donors.


2015 ◽  
Vol 242 ◽  
pp. 163-168 ◽  
Author(s):  
Ilia L. Kolevatov ◽  
Frank Herklotz ◽  
Viktor Bobal ◽  
Bengt Gunnar Svensson ◽  
Edouard V. Monakhov

The evolution of irradiation-induced and hydrogen-related defects in n-type silicon in the temperature range 0 – 300 °C has been studied by deep level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). Implantation of a box-like profile of hydrogen was performed into the depletion region of a Schottky diode to undertake the DLTS and MCTS measurements. Proportionality between the formation of two hydrogen-related deep states and a decrease of the vacancy-oxygen center concentration was found together with the appearance of new hydrogen-related energy levels.


2017 ◽  
Vol 897 ◽  
pp. 279-282 ◽  
Author(s):  
Hussein M. Ayedh ◽  
Maurizio Puzzanghera ◽  
Bengt Gunnar Svensson ◽  
Roberta Nipoti

A vertical 4H-SiC p-i-n diode with 2×1020cm-3 Al+ implanted emitter and 1950°C/5min post implantation annealing has been characterized by deep level transient spectroscopy (DLTS). Majority (electron) and minority (hole) carrier traps have been found. Electron traps with a homogeneous depth profile, are positioned at 0.16, 0.67 and 1.5 eV below the minimum edge of the conduction band, and have 3×10-15, 1.7×1014, and 1.8×10-14 cm2 capture cross section, respectively. A hole trap decreasing in intensity with decreasing pulse voltage occurs at 0.35 eV above the maximum edge of the valence band with 1×1013 cm2 apparent capture cross section. The highest density is observed for the refractory 0.67 eV electron trap that is due to the double negative acceptor states of the carbon vacancy.


2011 ◽  
Vol 679-680 ◽  
pp. 804-807 ◽  
Author(s):  
F. Danie Auret ◽  
Walter E. Meyer ◽  
M. Diale ◽  
P.J. Janse Van Rensburg ◽  
S.F. Song ◽  
...  

Gallium nitride (GaN), grown by HVPE, was implanted with 300 keV Eu ions and then annealed at 1000 oC . Deep level transient spectroscopy (DLTS) and Laplace DLTS (L-DLTS) were used to characterise the ion implantation induced defects in GaN. Two of the implantation induced defects, E1 and E2, with DLTS peaks in the 100 – 200 K temperature range, had DLTS signals that could be studied with L-DLTS. We show that these two defects, with energy levels of 0.18 eV and 0.27 eV below the conduction band, respectively, are two configurations of a metastable defect. These two defect states can be reproducibly removed and re-introduced by changing the pulse, bias and temperature conditions, and the transformation processes follow first order kinetics.


Sign in / Sign up

Export Citation Format

Share Document