Nanoindentation Induced Fracture in Hard Multilayer Thin Films

2001 ◽  
Vol 695 ◽  
Author(s):  
A. Karimi ◽  
D. Bethmont ◽  
Y. Wang

ABSTRACTDepth sensing nanoindentation and nanoscratch testing were combined with atomic force microscopy (AFM) and electron microscopy observations to study mechanical properties and fracture behavior of a number of TixAl1-xNyC1-y hard thin films. Various failure modes were activated either by normal loading-unloading or by microscratching of the samples to provide an estimation of the fracture toughness and interfacial fracture energies. By changing chemical composition and deposition conditions various nanostructured thin films including monolitically grown single layer, nanocomposite, and multilayers were coated onto the tungsten carbide-cobalt substrates. All tested films exhibit elevated mechanical properties with high hardness (38 – 45 GPa) and modulus (500 – 570 GPa). Under sufficiently high load indentation the formation of corner Palmqvist type radial cracks were usually observed because of small modulus mismatch between coating and substrate, good adhesion, and in particular high toughness of both substrate and films in spite of great difference in their respective hardness. Various failure modes were activated and the sequences of fracture events were determined using stepwise or continuously increasing load scratch tests. Some other films were found to be more sensitive to tensile stress behind the indenter which generates regularly repeated microcracks on the scratch track. Other films in particular multilayers were appeared more susceptible to compressive stress ahead of the indenter leading to local delamination at the interface between layers and the formation of irregular microcracks under the contact zone.

2016 ◽  
Vol 258 ◽  
pp. 358-361 ◽  
Author(s):  
Yuliya V. Chudinova ◽  
Denis V. Kurek ◽  
Valery P. Varlamov

Natural biodegradable and biocompatible polysaccharides chitosan, pectin, carrageenan and heparin were used to form thin nanostructured films. In this study using atomic force microscopy (AFM) and force spectroscopy the special characteristics of formation and structure of thin coatings were investigated, three models of the polymers interaction were proposed. Different mechanisms of polymers influence on each other in the bilayers formation were shown, coatings with different surface structure and mechanical properties were formed. The obtained data can be used for the preparation of nanostructured coatings with desired surface parameters.


Author(s):  
Sudheer Neralla ◽  
Sergey Yarmolenko ◽  
Dhananjay Kumar ◽  
Devdas Pai ◽  
Jag Sankar

Alumina is a widely used ceramic material due to its high hardness, wear resistance and dielectric properties. The study of phase transformation and its correlation to the mechanical properties of alumina is essential. In this study, interfacial adhesion properties of alumina thin films are studied using cross-sectional nanoindentation (CSN) technique. Alumina thin films are deposited at 200 and 700 °C, on Si (100) substrates with a weak Silica interface, using pulsed laser deposition (PLD) process. Effect of annealing on the surface morphology of the thin films is studied using atomic force microscopy. Xray diffraction studies revealed that alumina thin films are amorphous in nature at 200 °C and polycrystalline with predominant gamma alumina phase at 700 °C.


1996 ◽  
Vol 458 ◽  
Author(s):  
Andrey V. Zagrebelny ◽  
Erica T. Lilleodden ◽  
C. Barry Carter

ABSTRACTInterfaces between glass and crystalline grains have been examined using a thin-film geometry which allows the use of newly developed experimental methods for micromechanical testing of interfaces. In this approach, continuous films of thicknesses ranging 100–200 nm of anorthite (CaAl2Si2O8), celsian (BaAl2Si2O8), and monticellite (CaMgSiO4) are deposited onto single-crystal Al2O3 (α-structure) surfaces of different crystallographic orientations by pulsed-laser deposition (PLD).Mechanical properties such as hardness, stiffness, and reduced Young's modulus were probed with a newly developed high-resolution depth-sensing indentation instrument. Emphasis has been placed on examining how changes in the glass composition will affect the mechanical properties of the single-crystal Al2O3/silicate-glass interfaces. The indentation data obtained from these experiments correlate directly to the morphology of the deformed regions imaged with atomic force microscopy (AFM). Nanomechanical tests combined with AFM imaging of the deformed regions allow force-displacement measurements and in-situ imaging of the same regions of the specimen before and immediately after indentation. This new technique eliminates the uncertainty of locating the indenter after unloading.


2012 ◽  
Vol 186 ◽  
pp. 168-171 ◽  
Author(s):  
Łukasz Cieniek ◽  
Jan Kusiński

Two types of different oxides multifunctional thin films were deposited by PLD technique on the surface of Si and MgO substrates. First of them was CoO doped with Ca content characterized by fcc (halite) structure and second one was perovskite-type LaCoO3 compound. Their microstructure, chemical/phase composition and morphology were examined by means of diverse techniques (SEM, TEM, EDS). For the surface topography observations of thin films the Atomic Force Microscopy (AFM) was applied. Nanohardness and scratch tests (adhesion measurements) were also performed for estimation of (Co,Ca)O and LaCoO3 films mechanical properties and quality. Obtained results confirm that using PLD technique it is possible to carry stoichiometric composition of different compounds from the target to single crystal substrate however the microstructure and properties of obtained thin films are highly influenced by the substrate’s material and laser ablation parameters (laser wavelength, energy density, time and target-substrate distance).


2013 ◽  
Vol 28 ◽  
pp. 59-66
Author(s):  
Sharmila Pradhan ◽  
Stefanie Scholtissek ◽  
Ralf Lach ◽  
Werner Lebek ◽  
Wolfgang Grellmann ◽  
...  

The nanocomposites based on sulfonated ethylene/1-octene copolymer (sEOC) and organophilic modified layered silicate were synthesized. The morphology of the ionomeric product was studied with the help of Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared (FTIR) spectroscopy and microhardness measurements. It was shown that via the solution cast technique, the nanocomposite with uniformly distributed filer morphology can be conveniently prepared. The significant enhancement of the mechanical properties due to ionomerization was attested with the help of depth sensing microhardness measurements. It was found that the hardness of ionomer nanocomposite comprising 5 wt.-% layered silicate is approximately four fold of the neat elastomer. DOI: http://dx.doi.org/10.3126/jncs.v28i0.8060 Journal of Nepal Chemical Society Vol.28, 2011 Page : 59-66 Uploaded date: May 7, 2013


Author(s):  
H.-S. Zhang ◽  
J. L. Endrino ◽  
A. Anders

The incorporation of silver into the diamond-like carbon (DLC) coatings has shown excellent potential in various applications; therefore the surface and tribological properties of silver-containing DLC thin films deserve to be investigated. In this study we have deposited silver-containing hydrogenated and hydrogen-free DLC coatings by plasma immersion ion implantation and deposition (PIII-D) methods. Atomic force microscopy (AFM) and nano-scratch tests were used to study the surface and tribological properties. The silver incorporation had only slight effects on hydrogenated DLC coatings. However, the incorporation of silver has significant effect on hydrogen-free DLC of smoothing the surface and increasing the surface energy. Those effects have been illustrated and explained in the context of experimental results.


2003 ◽  
Vol 806 ◽  
Author(s):  
Senthil N Sambandam ◽  
Shekhar Bhansali ◽  
Venkat R. Bhethanabotla

ABSTRACTMicrostructures of multi-component amorphous metallic glass alloys are becoming increasingly important due to their excellent mechanical properties and low coefficient of friction. In this work, thin films of Zr-Ti-Cu-Ni-Be have been deposited by DC magnetron sputtering in view of exploring their potential technological applications in fields such as Micro Electro Mechanical Systems (MEMS). Their structure, composition, surface morphology, mechanical properties viz., hardness and Young's modulus were analyzed using X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Nanoindentation. Influence of the deposition parameters of sputtering pressure and power upon the composition and surface morphology of these films has been evidenced by SEM, and AFM analysis, showing that such a process yields very smooth films with target composition at low sputtering pressures. These studies are useful in understanding the multicomponent sputtering process.


2001 ◽  
Vol 697 ◽  
Author(s):  
A.K. Sikder ◽  
I. M. Irfan ◽  
Ashok Kumar ◽  
Robert Durvin ◽  
Mark McDonough ◽  
...  

Mechanical properties of thin films differ significantly from those of bulk materials due to the effects of interfaces, microstructure and thick underlying substrates. In this study we will present the results of nanoindentation tests to evaluate mechanical properties of nitride (TiN, ZrN, CrN, TiCN and TiAlN) thin films. Films were coated on steel substrates using cathodic arc deposition technique. Surface morphology and roughness of the samples are investigated using atomic force microscopy (AFM). Films were also characterized by x-ray diffraction (XRD) technique. Nanoindentation technique along with AFM and XRD methods are very useful for characterizing hard thin coatings.


2003 ◽  
Vol 780 ◽  
Author(s):  
Jie Xu ◽  
Daniel P. Durisin ◽  
Gregory W. Auner

AbstractBaTiO3 thin films have been grown on Si(100) substrate by KrF pulsed – laser deposition (PLD). The process parameters such as background gas pressure, substrate temperature, and laser fluence were varied in order to investigate their influence on the crystal structure, surface morphology and mechanical properties. The films were characterized by X-ray diffraction (XRD), UV/VIS/NIR spectrometer, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The hardness, Young's modules and scratch testing of BaTiO3 films were measured using nano-indenter. The stoichiometric BaTiO3 films having uniform grains were grown. The defects and particulates were generated at higher laser fluence. The size and density of particulates were increased with tighter laser focus. The results from dynamic scratch test indicated that the films with good adhesion were grown at moderate laser fluence.


Sign in / Sign up

Export Citation Format

Share Document