Performance Assessment of Geological Disposal of High-level Radioactive Waste in a Plastic Clay formation

2002 ◽  
Vol 713 ◽  
Author(s):  
Jan Marivoet ◽  
Xavier Sillen ◽  
Dirk Mallants ◽  
Peter De Preter

ABSTRACTIn Belgium the possibilities to dispose of high-level waste in the plastic Boom Clay formation has been studied since 1975. Consequently many results of the site characterisation programme are already available. Various performance assessments have been carried out dealing with the disposal of high-level waste arising from reprocessing and with direct disposal of spent fuel. The performance assessment consists of two main steps: scenario development and consequence analyses. The scenario analysis is based on a catalogue of features, events and processes (FEPs) having the potential to influence the behaviour of the repository system. Two main groups of scenarios are distinguished. The normal evolution scenario, including a number of variants, treats the FEPs that are fairly sure to take place. Altered evolution scenarios focus on FEPs having a probability of occurrence lower than one but that might influence the performance of the repository system. For the impact analyses, a robust concept approach was introduced, which focused the analyses on a limited number of well-characterised barriers and processes. The impact analyses are complemented with sensitivity and uncertainty analyses based on deterministic and probabilistic approaches.

Author(s):  
Pierre Van Iseghem ◽  
Jan Marivoet

This paper discusses the impact of the parameter values used for the transport of radionuclides from high-level radioactive waste to the far-field on the long-term safety of a proposed geological disposal in the Boom Clay formation in Belgium. The methodology of the Safety Assessment is explained, and the results of the Safety Assessment for vitrified high-level waste and spent fuel are presented. The radionuclides having the strongest impact on the dose-to-man for both HLW glass and spent fuel are 79Se, 129I, 126Sn, 36Cl, and 99Tc. Some of them are volatile during the vitrification process, other radionuclides are activation products, and for many of them there is no accurate information on their inventory in the waste form. The hypotheses in the selection of the main parameter values are further discussed, together with the status of the R&D on one of the main dose contributing radionuclides (79Se).


1986 ◽  
Vol 84 ◽  
Author(s):  
V. M. Oversby

AbstractPerformance assessment calculations are required for high level waste repositories for a period of 10,000 years under NRC and EPA regulations. In addition, the Siting Guidelines (IOCFR960) require a comparison of sites following site characterization and prior to final site selection to be made over a 100,000 year period. In order to perform the required calculations, a detailed knowledge of the physical and chemical processes that affect waste form performance will be needed for each site. While bounding calculations might be sufficient to show compliance with the requirements of IOCFR60 and 40CFRI91, the site comparison for 100,000 years will need to be based on expected performance under site specific conditions. The only case where detailed knowledge of waste form characteristics in the repository would not be needed would be where radionuclide travel times to the accessible environment can be shown to exceed 100,000 years. This paper will review the factors that affect the release of radionuclides from spemt fuel under repository conditions, summarize our present state of knowledge, and suggest areas where more work is needed in order to support the performance assessment calculations.


1992 ◽  
Vol 294 ◽  
Author(s):  
Felton W. Bingham

ABSTRACTThe regulations that currently govern repositories for spent fuel and high-level waste require demonstrations that are sometimes described as impossible to make. To make them will require an understanding of the current and the future phenomena at repository sites; it will also require credible estimates of the probabilities that the phenomena will occur in the distant future. Experts in many fields—earth sciences, statistics, numerical modeling, and the law—have questioned whether any amount of data collection can allow modelers to meet these requirements with enough confidence to satisfy the regulators. In recent years some performance assessments have begun to shed light on this question because they use results of actual site investigations. Although these studies do not settle the question definitively, a review of a recent totalsystem assessment suggests that compliance may be possible to demonstrate. The review also suggests, however, that the demonstration can be only at the “reasonable” levels of assurance mentioned, but not defined, in the regulations.


2015 ◽  
Vol 79 (6) ◽  
pp. 1317-1325 ◽  
Author(s):  
D. Justinavicius ◽  
P. Poskas

AbstractCorrosion of steel canisters, disposed of in a repository for high-level waste (HLW), leads to generation of hydrogen gas for a long period after the repository's closure. The accumulation of hydrogen gas may lead to significant desaturation and unacceptable build-up of pressure in the backfilled disposal tunnels if the gas cannot escape through the low-permeability host rock. Consequently, the investigation of gas migration is of high relevance in the assessment of the repository's performance.In this paper, the results of numerical investigations on gas migration performed using the computer code TOUGH2 (USA) are presented. The objective was to investigate migration of gas generated in a single disposal tunnel of a conceptual geological repository in a clay formation, which was suggested for benchmark studies in the European Commission project FORGE (Fate Of Repository GasEs). The analysis was focused on evaluation of the impact of an initial temperature in the repository and of different tortuosity models on gas migration. It was revealed that gas migration results were dependent on tortuosity model, while temperature variation in the repository had minor impact.


Author(s):  
Xavier Sillen ◽  
Jan Marivoet ◽  
Wim Cool ◽  
Peter de Preter

The classical numerical output, or indicator, from assessments of the long-term safety of geological disposal systems for high-level radioactive waste is the individual effective dose rate. This indicator is an estimate of the possible individual health detriment and it is commonly compared to regulatory limits for assessing the safety of other nuclear activities as well, such as medical and industrial activities. As a safety indicator, the individual dose rate provides an estimate of the overall safety of the disposal system. However, because of the time frames involved in safety assessments of geological disposal systems, the need arises of complementary safety indicators that could be less affected by uncertainties like those associated with future human behaviour or the effects of climate change on the biosphere and the aquifers. Such alternative safety indicators can be, for example, radionuclide concentrations in the groundwater or fluxes to the biosphere due to a repository. Safety indicators only tell how globally safe a disposal system is. For confidence building, performance indicators can be used in addition to tell how the system works. In particular, performance indicators such as fluxes, activities or activity concentrations of selected radionuclides can show how the different components of the system fulfil their safety functions and contribute to the overall safety. The SPIN project of the European Commission assessed the usefulness of seven safety indicators and fourteen performance indicators by testing them in four actual assessments of disposal systems in granite formations. In this paper, indicators calculated from an assessment of the disposal of spent fuel in the poorly indurated Boom Clay formation are presented. Conclusions from the SPIN project that hold for repositories in clays are highlighted, as well as results that illustrate differences between the granite and clay disposal options. Finally, various performance and safety indicators are combined into a logical sequence to comprehensively present, and explain, the results of a safety assessment.


2001 ◽  
Vol 298 (1-2) ◽  
pp. 125-135 ◽  
Author(s):  
Dirk Mallants ◽  
Jan Marivoet ◽  
Xavier Sillen

1988 ◽  
Vol 127 ◽  
Author(s):  
Jan L. Marivoet ◽  
Geert Volckaert ◽  
Arnold A. Bonne

ABSTRACTPerformance assessment studies have been undertaken on the geological disposal of high-level waste in a clay layer in the framework of the CEC project PAGIS. The methodology applied consists of two consecutive steps : a scenario and a consequence analysis. The scenario analysis has indicated that scenarios of normal evolution, of human intrusion, of climatic change, of secondary glaciation effects and of faulting should be evaluated. For the consequence analysis as well deterministic “best estimate” as stochastic calculations, including uncertainty, risk and sensitivity analyses, have been elaborated.The calculations performed show that most radionuclides decay to negligible levels within the first fewjneters of the clay barrier. Just a few radionuclides, 99Tc, 135Cs and 237Np with its daughter nuclides 233U and 229Th can eventually reach the biosphere. The maximum dose rates arising from the geological disposal of HLW, as evaluated by the “best-estimate” approach are about 10−11 Sv/y for river pathways. If the sinking of a water well into the 150 m deep aquifer layer in the vicinity of the repository is considered together with a climatic change, the maximum calculated dose rate rises to a value of 3×10−7 Sv/y. The maximum dose rates evaluated by stochastic calculations are about one order of magnitude higher due to the considerable uncertainties in the model parameters. In the case of the Boom clay the estimated consequences of a fault scenario are of the same order of magnitude as the results obtained for the normal evolution scenario. The maximum risk is estimated from the results obtained through stochastic calculations to be about 5×10−8 per year. The sensitivity analysis has shown that the effective thickness of the clay layer, the retention factors of Tc, Cs and Np, and the Darcy velocity in the aquifer are parameters which strongly influence the calculated dose rates.


2002 ◽  
Vol 757 ◽  
Author(s):  
V. Pirlet ◽  
P. Van Iseghem

ABSTRACTOrganic complexes of actinides are known to occur upon interaction of high level waste glass and Boom Clay which is a potential host rock formation for disposal of high level waste in Belgium. The solubility and mobility of 237Np, one of the most critical radionuclides, can be affected by the high dissolved organic carbon content of the Boom Clay porewater through complexation with the humic substances. The influence of humic substances on the Np behaviour is considered through dissolution tests of Np-doped glasses in Boom Clay water and through fundamental study of the specific interaction between Np(IV) and the humic acids using spectroscopic techniques. High Np(IV) concentrations are found in the glass dissolution tests. These concentrations are higher than what we should expect from the solubility of Np(OH)4, the solubility limiting solid phase predicted under the reducing conditions and pH prevailing in Boom Clay. Studying the specific interaction of Np(IV) with humic acids in Boom Clay porewater, high soluble Np concentrations are also measured and two main tetravalent Np-humate species are observed by UV-Vis spectroscopy. The two species are interpreted in terms of mixed hydroxo-humate complexes, Np(OH)xHA with x = 3 or 4. These species are the most likely species that can form according to the pH working conditions. Using thermodynamic simplified approaches, high complexation constants, i.e. log β131 and log β141 respectively equal to 46 and 51.6, are calculated for these species under the Boom Clay conditions.Comparing the spectroscopic results of the dissolution tests with the study of the interaction of Np(IV) with humic substances, we can conclude that the complexation of Np(IV) with the humic acids may occur and increases the solubility of Np(OH)4 upon interaction of a Np-doped glass and the Boom Clay porewater.


Author(s):  
Sidik Permana ◽  
Mitsutoshi Suzuki

The embodied challenges for introducing closed fuel cycle are utilizing advanced fuel reprocessing and fabrication facilities as well as nuclear nonproliferation aspect. Optimization target of advanced reactor design should be maintained properly to obtain high performance of safety, fuel breeding and reducing some long-lived and high level radioactivity of spent fuel by closed fuel cycle options. In this paper, the contribution of loading trans-uranium to the core performance, fuel production, and reduction of minor actinide in high level waste (HLW) have been investigated during reactor operation of large fast breeder reactor (FBR). Excess reactivity can be reduced by loading some minor actinide in the core which affect to the increase of fuel breeding capability, however, some small reduction values of breeding capability are obtained when minor actinides are loaded in the blanket regions. As a total composition, MA compositions are reduced by increasing operation time. Relatively smaller reduction value was obtained at end of operation by blanket regions (9%) than core regions (15%). In addition, adopting closed cycle of MA obtains better intrinsic aspect of nuclear nonproliferation based on the increase of even mass plutonium in the isotopic plutonium composition.


Sign in / Sign up

Export Citation Format

Share Document