Formation of Defects in MBE Re-Grown GaAs Films on GaAs/AlGaAs Heterostructures

2002 ◽  
Vol 744 ◽  
Author(s):  
M. Lamberti ◽  
V. Tokranov ◽  
R. Moore ◽  
M. Yakimov ◽  
A. Katsnelson ◽  
...  

ABSTRACTIn the present work, we examine the formation of defects on the sidewall slope in 1 μm - thick GaAs layers regrown on GaAs/AlGaAs heterostructures. Site-specific TEM specimens of sidewall slopes are obtained using focused ion beam combined with lift-out method. TEM analysis shows planar defects, such as stacking faults and microtwins, dislocations and large twinned areas, nucleating on the AlGaAs surfaces. SIMS and EDX reveal an increase in carbon and oxygen at the interface. The defect density increased with Al content exceeding 1010 cm-2 on Al0.4Ga0.6As. The defect formation is related to the oxidation of Al-containing surfaces.

1997 ◽  
Vol 480 ◽  
Author(s):  
L. A. Giannuzzi ◽  
J. L. Drown ◽  
S. R. Brown ◽  
R. B. Irwin ◽  
F. A. Stevie

AbstractA site specific technique for cross-section transmission electron microscopy specimen preparation of difficult materials is presented. Focused ion beams are used to slice an electron transparent sliver of the specimen from a specific area of interest. Micromanipulation lift-out procedures are then used to transport the electron transparent specimen to a carbon coated copper grid for subsequent TEM analysis. The experimental procedures are described in detail and an example of the lift-out technique is presented.


1999 ◽  
Vol 7 (2) ◽  
pp. 12-15 ◽  
Author(s):  
Lucille A. Giannuzzi ◽  
Richard Young ◽  
Pete Carleson

AbstractDriven by the analytical needs of microelectronics, magnetic media and micro-fabrication industries, focused ion beam (FIB) systems are now capable of milling and manipulating samples for the analysis of microstructure features having dimensions of 180 nm or less, A technique for locating and extracting site specific specimens for examination by transmission electron microscopy (TEM) has been developed. An identified feature can be located and precisely milled with an FIB system from two sides to prepare an ultrathin sample, and then extracted from the region with a glass rod micromanipulator onto a grid for TEM analysis. This specimen preparation method has been applied to semiconductor failure analysis and to the study of metallic and ceramic microsiructures with irregular topographies and complex mufti-layered components.


1996 ◽  
Vol 4 (6) ◽  
pp. 24-25
Author(s):  
John F. Walker

Part 1 of this series described how focused ion beam (FIB) microsurgery is used to successfully cross-section and prepare materialspecific samples for SEM and TEM analysis. In Part 2, we detailed how FIB is also the tool of choice to prepare site-specific samples, particularly for transmission electron microscopy (TEM) analysis. In this final article of this series, we describe actual sample preparation, cutting a selected area la size and mounting it on a grid for FIB preparation. Focused ion beams are very useful in preparing TEM specimens that have unique characteristics. In particular, the ability of such systems to image submicron features within a structure has allowed accurate identification of the precise place to make a membrane.


2000 ◽  
Vol 6 (S2) ◽  
pp. 518-519
Author(s):  
J. K. Lomness ◽  
L. A. Giannuzzi ◽  
M. D. Hampto

The focused ion beam (FIB) instrument offers an efficient and reproducible approach for obtaining electron transparent membranes of uniform thickness for TEM analysis. Thus, the use of the FIB to investigate numerous types of materials has grown tremendously recently. Prenitzer et al. demonstrated the ability to acquire TEM specimens from individual Zn powder particles using the FIB lift-out (LO) specimen preparation technique. The 10 μm × 100 μm Zn powders particles were larger than the 5 μrn x 20 μm FIB LO specimen and therefore the LO technique could be directly applied to an individual powder particle. This paper will discuss a novel approach for the preparation of site specific micrometer-sized particles for TEM analysis using the FIB LO technique. The uniqueness of the technique described herein is that site specific TEM LO specimens may be obtained from regions which are smaller than the conventional dimensions of the LO specimen.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Max L. Lifson ◽  
Carla M. Chapman ◽  
D. Philip Pokrinchak ◽  
Phyllis J. Campbell ◽  
Greg S. Chrisman ◽  
...  

Abstract Plan view TEM imaging is a powerful technique for failure analysis and semiconductor process characterization. Sample preparation for near-surface defects requires additional care, as the surface of the sample needs to be protected to avoid unintentionally induced damage. This paper demonstrates a straightforward method to create plan view samples in a dual beam focused ion beam (FIB) for TEM studies of near-surface defects, such as misfit dislocations in heteroepitaxial growths. Results show that misfit dislocations are easily imaged in bright-field TEM and STEM for silicon-germanium epitaxial growth. Since FIB tools are ubiquitous in semiconductor failure analysis labs today, the plan view method presented provides a quick to implement, fast, consistent, and straightforward method of generating samples for TEM analysis. While this technique has been optimized for near-surface defects, it can be used with any application requiring plan view TEM analysis.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


Author(s):  
Chuan Zhang ◽  
Jane Y. Li ◽  
John Aguada ◽  
Howard Marks

Abstract This paper introduces a novel sample preparation method using plasma focused ion-beam (pFIB) milling at low grazing angle. Efficient and high precision preparation of site-specific cross-sectional samples with minimal alternation of device parameters can be achieved with this method. It offers the capability of acquiring a range of electrical characteristic signals from specific sites on the cross-section of devices, including imaging of junctions, Fins in the FinFETs and electrical probing of interconnect metal traces.


Author(s):  
Roger Alvis ◽  
Jeff Blackwood ◽  
Sang-Hoon Lee ◽  
Matthew Bray

Abstract Semiconductor devices with critical dimensions less than 20nm are now being manufactured in volume. A challenge facing the failure analysis and process-monitoring community is two-fold. The first challenge of TEM sample prep of such small devices is that the basic need to end-point on a feature-of-interest pushes the imaging limit of the instrument being used to prepare the lamella. The second challenge posed by advanced devices is to prepare an artifact-free lamella from non-planar devices such as finFETs as well as from structures incorporating ‘non-traditional’ materials. These challenges are presently overcome in many advanced logic and memory devices in the focused ion beam-based TEM sample preparation processes by inverting the specimen prior to thinning to electron transparency. This paper reports a highthroughput method for the routine preparation of artifact-free TEM lamella of 20nm thickness, or less.


Sign in / Sign up

Export Citation Format

Share Document