Some Aspects of the Materials Science of Low-K Integration

2003 ◽  
Vol 766 ◽  
Author(s):  
Vincent McGahay

AbstractThe microelectronic industry's transition to low dielectric constant insulators in the wiring levels of integrated circuits has proven to be more difficult than expected. Materials properties are an integral part of the problem, as much for yield as for reliability. Unfortunately, many properties which are important for manufacturing robustness tend to degrade as the dielectric constant is lowered. Although materials properties are a useful guide to low-K manufacturability, inflexibility with regard to specifications could ultimately limit future progress. Application of basic principles of materials science to the integration of low-K dielectrics can give critical insight into the nature of the difficulties. Several examples of problems in low-K integration which benefit from such analysis are given.

2011 ◽  
Vol 110-116 ◽  
pp. 5380-5383
Author(s):  
Tejas R. Naik ◽  
Veena R. Naik ◽  
Nisha P. Sarwade

Scaling down the integrated circuits has resulted in the arousal of number of problems like interaction between interconnect, crosstalk, time delay etc. These problems can be overcome by new designs and by use of corresponding novel materials, which may be a solution to these problems. In the present paper we try to put forward very recent development in the use of novel materials as interlayer dielectrics (ILDs) having low dielectric constant (k) for CMOS interconnects. The materials presented here are porous and hybrid organo-inorganic new generation interlayer dielectric materials possessing low dielectric constant and better processing properties.


2014 ◽  
Vol 1692 ◽  
Author(s):  
Maxime Darnon ◽  
Nicolas Posseme ◽  
Thierry Chevolleau ◽  
Thibaut L. David

ABSTRACTTo improve the integrated circuits’ performance and continue the downscaling of dimensions, it is necessary to use low dielectric constant materials as interconnects insulators. Current porous SiCOH low-k dielectrics are now reaching their limits since their porosity enables the diffusion of species that modify the inner surface of the pores. To further reduce the dielectric constant, it is necessary to change paradigm in interconnects fabrication. In this paper, we discuss the most promising innovations in terms of process, materials and architectures to reduce the interconnects insulators dielectric constant.


Author(s):  
Pengyan Xue ◽  
Junwei Feng ◽  
Congwei Xie ◽  
Lan Wang ◽  
Abudukadi Tudi ◽  
...  

Low dielectric constant (low-k) fluorinated silica is one of the most important materials used in ultralarge scale integrated circuits (ULSIs); however, it is remains unclear what the minimum k possible...


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


2003 ◽  
Vol 766 ◽  
Author(s):  
Jin-Heong Yim ◽  
Jung-Bae Kim ◽  
Hyun-Dam Jeong ◽  
Yi-Yeoul Lyu ◽  
Sang Kook Mah ◽  
...  

AbstractPorous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).


RSC Advances ◽  
2015 ◽  
Vol 5 (82) ◽  
pp. 66511-66517 ◽  
Author(s):  
Albert S. Lee ◽  
Sung Yeoun Oh ◽  
Seung-Sock Choi ◽  
He Seung Lee ◽  
Seung Sang Hwang ◽  
...  

Low dielectric constant poly(methyl)silsesquioxane spin-on-glass resins incorporating a cyclic precursor exhibited exceptional mechanical properties to withstand CMP processes.


2007 ◽  
Vol 990 ◽  
Author(s):  
Olivier Gourhant ◽  
Vincent Jousseaume ◽  
Laurent Favennec ◽  
Aziz Zenasni ◽  
Patrick Maury ◽  
...  

ABSTRACTThe increase of integrated circuits performances requires ultra-low dielectric constant (ULK) materials to minimize the drawbacks of miniaturization. Amorphous SiOCH are promising candidates for ULK materials as porosity can be introduced via a two steps elaboration. In a first step, organo-silicon species and organic species are co-deposited by PECVD. Then, a thermal annealing, alone or assisted by UV radiation, removes the organic labile phase and creates pore inclusions into the final material. In this work, the extendibility of this porogen approach is investigated in order to lower the dielectric constant. An increase of the porogen loading in hybrid film is studied by tuning the precursors ratio injected in the plasma gas feed. The increase of organic species amount is operated in order to create more pores sites. However, the post-treatment does not lead automatically to higher porosity. Actually, an increase of the porosity is observed only until a porogen loading limit and decreases above this limit. The shrinkage of the film during the post-treatment can explain this limitation. For high ratios of porogen, the film shrinkage increases drastically and leads to a decrease of the porosity finally created. At last, the link between porosity and dielectric constant is enlightened and a minimum in term of K value is reached with both post-treatments: dielectric constant of 2.1 and 2.3 are obtained using respectively thermal treatment and UV curing.


2002 ◽  
Vol 124 (4) ◽  
pp. 362-366 ◽  
Author(s):  
Christopher L. Borst ◽  
Dipto G. Thakurta ◽  
William N. Gill ◽  
Ronald J. Gutmann

Successful integration of copper and low dielectric constant (low-k) materials is dependent on robust chemical-mechanical planarization (CMP) during damascene patterning. This process includes the direct removal of copper and interaction of the copper slurry with the underlying dielectric. Experiments were designed and performed to examine the CMP of two low-k polymers from Dow Chemical Company, bis-benzocyclobutene (BCB*, k=2.65) and “silicon-application low-k material” (SiLK* resin, k=2.65) with both acidic slurries suitable for copper damascene patterning and a KH phthalate-based model slurry developed for SiLK. Blanket polymer films were polished in order to determine the interactions that occur when copper and liner materials are removed by the damascene CMP process. Removal rates were obtained from material thickness measurements, post-CMP surface topography from AFM scans, and post-CMP surface chemistry from XPS measurements. Physically based wafer-scale models are presented which are compatible with the experimental results.


1998 ◽  
Vol 524 ◽  
Author(s):  
Yanjun Ma ◽  
Hongning Yang ◽  
J. Guo ◽  
C. Sathe ◽  
A. Agui ◽  
...  

ABSTRACTPerformance of future generations of integrated circuits will be limited by the RC delay caused by on-chip interconnections. Overcoming this limitation requires the deployment of new high conductivity metals such as copper and low dielectric constant intermetal dielectrics (IMD). Fluorinated amorphous carbon (a-CFx) is a promising candidate for replacing SiO2 as the IMD. In this paper we investigated the structure and electronic properties of a-CFx thin films using high-resolution x-ray absorption, emission, and photoelectron spectroscopy. The composition and local bonding information were obtained and correlated with deposition conditions. The data suggest that the structure of the a-CFx is mostly of carbon rings and CF2 chains cross-linked with C atoms. The effects of growth temperature on the structure and the thermal stability of the film are discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (60) ◽  
pp. 48898-48907 ◽  
Author(s):  
Vaithilingam Selvaraj ◽  
K. P. Jayanthi ◽  
Thatchanamurthy Lakshmikandhan ◽  
Muthukaruppan Alagar

Scheme shows the synthesis of a cardanol-based polybenzoxazine composite for low-dielectric constant applications.


Sign in / Sign up

Export Citation Format

Share Document