Prospects for dielectric constant reduction in integrated circuits interconnects

2014 ◽  
Vol 1692 ◽  
Author(s):  
Maxime Darnon ◽  
Nicolas Posseme ◽  
Thierry Chevolleau ◽  
Thibaut L. David

ABSTRACTTo improve the integrated circuits’ performance and continue the downscaling of dimensions, it is necessary to use low dielectric constant materials as interconnects insulators. Current porous SiCOH low-k dielectrics are now reaching their limits since their porosity enables the diffusion of species that modify the inner surface of the pores. To further reduce the dielectric constant, it is necessary to change paradigm in interconnects fabrication. In this paper, we discuss the most promising innovations in terms of process, materials and architectures to reduce the interconnects insulators dielectric constant.

2011 ◽  
Vol 110-116 ◽  
pp. 5380-5383
Author(s):  
Tejas R. Naik ◽  
Veena R. Naik ◽  
Nisha P. Sarwade

Scaling down the integrated circuits has resulted in the arousal of number of problems like interaction between interconnect, crosstalk, time delay etc. These problems can be overcome by new designs and by use of corresponding novel materials, which may be a solution to these problems. In the present paper we try to put forward very recent development in the use of novel materials as interlayer dielectrics (ILDs) having low dielectric constant (k) for CMOS interconnects. The materials presented here are porous and hybrid organo-inorganic new generation interlayer dielectric materials possessing low dielectric constant and better processing properties.


2003 ◽  
Vol 766 ◽  
Author(s):  
Vincent McGahay

AbstractThe microelectronic industry's transition to low dielectric constant insulators in the wiring levels of integrated circuits has proven to be more difficult than expected. Materials properties are an integral part of the problem, as much for yield as for reliability. Unfortunately, many properties which are important for manufacturing robustness tend to degrade as the dielectric constant is lowered. Although materials properties are a useful guide to low-K manufacturability, inflexibility with regard to specifications could ultimately limit future progress. Application of basic principles of materials science to the integration of low-K dielectrics can give critical insight into the nature of the difficulties. Several examples of problems in low-K integration which benefit from such analysis are given.


1999 ◽  
Vol 565 ◽  
Author(s):  
Hideki Gomi ◽  
Koji Kishimoto ◽  
Tatsuya Usami ◽  
Ken-ichi Koyanagi ◽  
Takashi Yokoyama ◽  
...  

AbstractThe technologies utilizing Fluorinated Silicon Oxide (FSG, k=3.6) and Hydrogen Silsesquioxane (HSQ, k=3.0) have been established for 0.25-μm and 0.18-μm generation ULSIs. However, low-k materials for the next generation ULSIs, which have a dielectric constant of less than 3.0, have not become mature yet. In this paper, we review process integration issues in applying FSG and HSQ, and describe integration results and device performance using Fluorinated Amorphous Carbon (a-C:F, k=2.5) as one of the promising low-k materials for the next generation ULSIs.


1997 ◽  
Vol 476 ◽  
Author(s):  
Nigel P. Hacker ◽  
Gary Davis ◽  
Lisa Figge ◽  
Todd Krajewski ◽  
Scott Lefferts ◽  
...  

Low dielectric constant materials (k < 3.0) have the advantage that higher performance IC devices may be manufactured with minimal increases in chip size. The reduced capacitance given by these materials permits shrinking spacing between metal lines to below 0.25 μm and the ability to decrease the number of levels of metal in a device. The technologies being considered for low k applications are CVD or spin-on of inorganic or organic polymeric materials. Traditional spin-on silicates or siloxanes have been used as planarizing dielectrics during the last 15 years and usually have k > 3.0.


1999 ◽  
Vol 564 ◽  
Author(s):  
Hideki Gomi ◽  
Koji Kishimoto ◽  
Tatsuya Usami ◽  
Ken-ichi Koyanagi ◽  
Takashi Yokoyama ◽  
...  

AbstractThe technologies utilizing Fluorinated Silicon Oxide (FSG, k=3.6) and Hydrogen Silsesquioxane (HSQ, k=3.0) have been established for 0.25-µm and 0.1 8-µm generation ULSIs. However, low-k materials for the next generation ULSIs, which have a dielectric constant of less than 3.0, have not become mature yet. In this paper, we review process integration issues in applying FSG and HSQ, and describe integration results and device performance using Fluorinated Amorphous Carbon (a-C:F, k=2.5) as one of the promising low-k materials for the next generation ULSIs.


1999 ◽  
Vol 8 (2) ◽  
pp. 26-30
Author(s):  
Rajenda Singh ◽  
Richard K. Ulrich

Silicon-based dielectrics (SiO2, Si3N4, SiOxNy etc.) have been widely used as the key dielectrics in the manufacturing of silicon integrated circuits (ICs) and virtually all other semiconductor devices. Dielectrics having a value of dielectric constant k × 8.854 F/cm more than that of silicon nitride (k > 7) are classified as high dielectric constant materials, while those with a value of k less than the dielectric constant of silicon dioxide (k < 3.9) are classified as the low dielectric constant materials. The minimum value of (k) is one for air. The highest value of k has been reported for relaxor ferroelectric (k = 24,700 at 1 kHz).


Author(s):  
Pengyan Xue ◽  
Junwei Feng ◽  
Congwei Xie ◽  
Lan Wang ◽  
Abudukadi Tudi ◽  
...  

Low dielectric constant (low-k) fluorinated silica is one of the most important materials used in ultralarge scale integrated circuits (ULSIs); however, it is remains unclear what the minimum k possible...


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


2003 ◽  
Vol 766 ◽  
Author(s):  
Jin-Heong Yim ◽  
Jung-Bae Kim ◽  
Hyun-Dam Jeong ◽  
Yi-Yeoul Lyu ◽  
Sang Kook Mah ◽  
...  

AbstractPorous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).


Sign in / Sign up

Export Citation Format

Share Document