Thermal Stability and Internal Stress for Strongly (111) Oriented Cu Films

2003 ◽  
Vol 795 ◽  
Author(s):  
Sinji Takayama ◽  
Makato Oikawa ◽  
Tokuji Himuro

ABSTRACTInternal stresses and thermal stability of strongly (111) oriented Cu thin films, which are one of promising interconnect materials in advanced ULSI devices, have been studied comparing with those of non-oriented Cu films. Their internal stresses parallel to a film surface were measured by a conventional X-ray diffraction technique (d-spacing vs. sin2ψ method), while the strain distribution with depth by a grazing incidence X-ray scattering (GIXS) methods. Large stress relaxation in strongly (111) oriented Cu films takes place at 200°C without showing any significant grain growth and formation of thermal defects like hillocks. The residual internal stresses of highly oriented (111) Cu films increase almost linearly throughout the thickness up to the substrates. The feature of stress distribution in film depth does not change on annealing. The changes of the residual stresses at each depth are nearly the same as stresses parallel to film surface measured.

2008 ◽  
Vol 1074 ◽  
Author(s):  
Doina Craciun ◽  
Gabriel Socol ◽  
Emanuel Axente ◽  
Aurelian-Catalin Galca ◽  
Rajiv Singh ◽  
...  

ABSTRACTThe crystalline structure, composition, chemical bonding and thermal stability of HfO2-Al2O3 mixtures deposited on Si using a combinatorial pulsed laser deposition technique were investigated. After deposition some films were annealed at temperatures from 850 to 950 °C for 6 or 12 minutes. Grazing incidence x-ray diffraction investigations were performed to asses the crystallinity and thermal stability of the annealed layers. Measurements of the Al to Hf ratios were performed using energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. From simulations of the x-ray reflectivity and spectroscopic ellipsometry spectra the phase composition and thickness of the films was calculated and then the Al to Hf ratios. Al/Hf values of 1 and 8 were found to be necessary to block the crystallization of the films after anneals at 850 and 950 °C, respectively.


2017 ◽  
Vol 727 ◽  
pp. 178-184
Author(s):  
Yu Wang ◽  
Hong Li ◽  
Ying Guo Yang ◽  
Geng Wu Ji ◽  
Kong Chao Shen ◽  
...  

The beta-phase of Zn4Sb3 has been regarded as a very promising thermoelectric material since middle nineties, owing to its unique merit: intermediate temperature region (200-400 °C), made of cheap, non-toxic and abundant elements and high thermoelectric property. However, the thermal stability of Zn4Sb3 seems to be an inherent obstacle for the practical application during the working temperatures. Herein, magnesium doped Zn-Sb semiconductor (Mg0.04Zn3.96Sb3) was investigated thoroughly in-situ during thermal annealing up to 600 K, whilst both microstructure and electronic structures were recorded via the combination of synchrotron-based two dimensional X-ray diffraction techniques and the X-ray photoemission spectroscopy. While the time-resolved grazing incidence XRD reveals the preserved crystal structures during thermal annealing to 600 K, XPS measurement demonstrate the robustness of electronic structures. On basis of these findings, it was concluded in the end that the doping of magnesium significantly improves the thermal stability of zinc-antimonite compounds and introduces minor influence on the electronic structure of Zn-Sb alloy. Our study may propose an effective approach towards the wild application of Zn4Sb3 related thermoelectric materials.


1995 ◽  
Vol 10 (12) ◽  
pp. 3062-3067 ◽  
Author(s):  
O. Lenoble ◽  
J.F. Bobo ◽  
H. Fischer ◽  
Ph. Bauer ◽  
M.F. Ravet ◽  
...  

Iron/alumina multilayers have been deposited on sapphire wafers using RF magnetron sputtering. To study the interdiffusion, the multilayers were annealed in a tubular furnace under a 10−7 mbar vacuum, and the samples examined by using a combination of classical diffractometry (θ/2θ) and Grazing Incidence Scattering (GIS) for the phase determination, and Small Angle X-ray Scattering (SAXS) for the superstructure of the multilayers. In all cases, in the as-deposited state the alumina is amorphous and the iron is crystalline in the bcc phase. Thermal anneals at temperatures between 573 and 873 K give evidence for segregation to the interfaces. At higher temperatures, interdiffusion occurs, leading to the formation of different phases. The Fe-Al2O3 interdiffusion coefficient has been evaluated in the temperature range from 873 to 1273 K.


2000 ◽  
Vol 628 ◽  
Author(s):  
Sophie Besson ◽  
Catherine Jacquiod ◽  
Thierry Gacoin ◽  
André Naudon ◽  
Christian Ricolleau ◽  
...  

ABSTRACTA microstructural study on surfactant templated silica films is performed by coupling traditional X-Ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM) to Grazing Incidence Small Angle X-Ray Scattering (GISAXS). By this method it is shown that spin-coating of silicate solutions with cationic surfactant cetyltrimethylammonium bromide (CTAB) as a templating agent provides 3D hexagonal structure (space group P63/mmc) that is no longer compatible with the often described hexagonal arrangement of tubular micelles but rather with an hexagonal arrangement of spherical micelles. The extent of the hexagonal ordering and the texture can be optimized in films by varying the composition of the solution.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


2004 ◽  
Vol 19 (4) ◽  
pp. 347-351
Author(s):  
J. Xu ◽  
X. S. Wu ◽  
B. Qian ◽  
J. F. Feng ◽  
S. S. Jiang ◽  
...  

Ge–Si inverted huts, which formed at the Si∕Ge interface of Si∕Ge superlattice grown at low temperatures, have been measured by X-ray diffraction, grazing incidence X-ray specular and off-specular reflectivities, and transmission electron microscopy (TEM). The surface of the Si∕Ge superlattice is smooth, and there are no Ge–Si huts appearing on the surface. The roughness of the surfaces is less than 3 Å. Large lattice strain induced by lattice mismatch between Si and Ge is found to be relaxed because of the intermixing of Ge and Si at the Si∕Ge interface.


2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document