Low Cost Integrated Sensors Utilizing Patterned Nano-Structured Titania Arrays Fabricated Using a Simple Process

2004 ◽  
Vol 828 ◽  
Author(s):  
Zuruzi Abu Samah ◽  
Andrei Kolmakov ◽  
Martin Moskovits ◽  
Noel C. MacDonald

ABSTRACTUsing a novel low-temperature process, we demonstrate the facile integration of crack-free nanostructured titania (NST) as sensing elements in microsystems. Unlike conventional sol-gel methods, NST layers of interconnected nano-walls and nano-wires were formed by reacting Ti surfaces with aqueous hydrogen peroxide solution. Cracks were observed in NST layers formed on blanket Ti films but absent on arrays of patterned Ti pads below a threshold dimension. Analyses using TEM, high resolution SEM, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that NST consists of anatase TiO2 nano-crystals. NST pads were found able to detect oxygen gas of a few ppm. NST pad arrays were integrated on rigid and flexible substrates with potential applications in low cost and wearable sensing systems.

2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2016 ◽  
Vol 689 ◽  
pp. 55-59
Author(s):  
Serge Zhuiykov

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nanoscale using energy dispersive X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1771 ◽  
Author(s):  
Stefan Neatu ◽  
Mihaela M. Trandafir ◽  
Adelina Stănoiu ◽  
Ovidiu G. Florea ◽  
Cristian E. Simion ◽  
...  

This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium–manganese mixed oxides, which were prepared by three different methods (coprecipitation, impregnation and citrate-based sol-gel method) followed by calcination at 500 °C. The physicochemical properties of the synthesized materials were investigated by various characterization techniques, namely: nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and H2–temperature programmed reduction (TPR). This experimental study demonstrated that the role of the catalytic surface is much more important than the bulk one. Indeed, the incipient impregnation of CeO2–MnOx catalyst, supported on an optimized amount of 4 wt.% La2O3–Al2O3, provided the best results of the catalytic combustion of methane on our catalytic micro-convertors. This is mainly due to: (i) the highest pore size dimensions according to the Brunauer-Emmett-Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H2–TPR and therefore more reactive oxygen species.


2019 ◽  
Vol 9 (4) ◽  
pp. 793 ◽  
Author(s):  
Camila Zequine ◽  
Fangzhou Wang ◽  
Xianglin Li ◽  
Deepa Guragain ◽  
S.R. Mishra ◽  
...  

The urea oxidation reaction (UOR) is a possible solution to solve the world’s energy crisis. Fuel cells have been used in the UOR to generate hydrogen with a lower potential compared to water splitting, decreasing the costs of energy production. Urea is abundantly present in agricultural waste and in industrial and human wastewater. Besides generating hydrogen, this reaction provides a pathway to eliminate urea, which is a hazard in the environment and to people’s health. In this study, nanosheets of CuCo2O4 grown on nickel foam were synthesized as an electrocatalyst for urea oxidation to generate hydrogen as a green fuel. The synthesized electrocatalyst was characterized using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The electroactivity of CuCo2O4 towards the oxidation of urea in alkaline solution was evaluated using electrochemical measurements. Nanosheets of CuCo2O4 grown on nickel foam required the potential of 1.36 V in 1 M KOH with 0.33 M urea to deliver a current density of 10 mA/cm2. The CuCo2O4 electrode was electrochemically stable for over 15 h of continuous measurements. The high catalytic activities for the hydrogen evolution reaction make the CuCo2O4 electrode a bifunctional catalyst and a promising electroactive material for hydrogen production. The two-electrode electrolyzer demanded a potential of 1.45 V, which was 260 mV less than that for the urea-free counterpart. Our study suggests that the CuCo2O4 electrode can be a promising material as an efficient UOR catalyst for fuel cells to generate hydrogen at a low cost.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2017 ◽  
Vol 76 (6) ◽  
pp. 1436-1446 ◽  
Author(s):  
Chenmo Wei ◽  
Jing Zhang ◽  
Yongli Zhang ◽  
Gucheng Zhang ◽  
Peng Zhou ◽  
...  

Sulfate radical-based advanced oxidation processes have had considerable attention due to the highly oxidizing function of sulfate radicals (SO4−·) resulting in acceleration of organic pollutants degradation in aqueous environments. A Co-Ni mixed oxide nanocatalyst, which was prepared by the sol-gel method, was employed to activate peroxymonosulfate (PMS, HSO5−) to produce SO4−· with Acid Orange 7 (AO7) selected as a radical probe. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The characterization results indicated that the ingredient of the catalyst had been changed and the amount of surface hydroxyl increased significantly with the addition of Ni. Therefore, it proved that Co-NiOx catalyst was more effective than CoOx to activate PMS. Moreover, ultrasound (US) can increase the degradation rate of AO7 and US/Co-NiOx/PMS system. This study also focused on some synthesis parameters and the system reached the maximum efficiency under the condition when [PMS] = 0.4 mM, [catalyst] = 0.28 g/L, Pus = 200 W. The AO7 removal in these systems follows first order kinetics. Last but not least, quenching studies was conducted which indicated that the amount of hydroxyl radicals (·OH) increases with the increase of initial pH and SO4−· was the primary reactive oxidant for AO7 degradation.


2016 ◽  
Vol 847 ◽  
pp. 72-77
Author(s):  
Yu Xuan Liang ◽  
Peng Peng Bai ◽  
Shu Qi Zheng

Pyrite (FeS2) is an important semiconductor material which shows various excellent optical and electrical properties and extensive applied prospect as a new-type, photoelectrical functional materials. In this study, a low cost and efficient simple hydrothermal two-step synthetic method was given to obtain FeS2 microspheres with 2-3 μm in diameter. The obtained products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet and visible spectrophotometer (UV-Vis). XRD showed that the synthetic sample consisted of two crystal structures of FeS2, pyrite and marcasite. SEM observation indicated that FeS2 microspheres were well crystallized and had good uniformity. UV-Vis spectrum had a strong optical absorption in the region of 200-400 nm wave length. The reaction temperature had an impact on the size of FeS2 microspheres. A possible mechanism for the size of the FeS2 microspheres generated at high temperature is smaller than that at low temperature is discussed.


2014 ◽  
Vol 1004-1005 ◽  
pp. 774-777 ◽  
Author(s):  
Ji Wan Liu ◽  
Gui Lin Chen ◽  
Wei Feng Liu ◽  
Guo Shun Jiang ◽  
Chang Fei Zhu

A low-cost non-vacuum process for fabrication of Cu2SnSe3 film by sol-gel method and knife-coating process is described. First, a certain amount of Copper (I) chloride and tin (IV) tetrachloride was dissolve into the mixture of water and alcohol and then some Polyvinyl Pyrrolidone (PVP) was added to the solution to obtain based colloidal solution. Next, precursor thin layer was deposited by knife-blading technique on soda-lime glass (SLG). Finally, precursor layer was annealed at selenium flow atmosphere carried by Ar gas at 550oC. Through X-ray diffraction (XRD) and Raman spectra, it is found that pure Cu2SnSe3 film was prepared successfully. Scanning electron microscopy (SEM) and UV–vis–NIR absorbance spectroscopy were used to characterize its morphology and optical bandgap.


Sign in / Sign up

Export Citation Format

Share Document