Mocvd Growth Of Single Crystal Znsxsel−x On Si

1987 ◽  
Vol 91 ◽  
Author(s):  
Patricia A. Sekula ◽  
Stanley M. Vernon ◽  
Chris J. Keavney

ABSTRACTSingle crystal ZnSxSel−x films have been grown for the first time on (111) Si substrates by low-pressure MOCVD. The epitaxial films clearly show a passivating effect on silicon solar cells, and act as antireflective coatings. Attempts at incorporating Al as an n-type dopant were unsuccessful as the films remain semi-insulating.

2012 ◽  
Vol 1426 ◽  
pp. 331-337
Author(s):  
Hiroshi Noge ◽  
Akira Okada ◽  
Ta-Ko Chuang ◽  
J. Greg Couillard ◽  
Michio Kondo

ABSTRACTWe have succeeded in the rapid epitaxial growth of Si, Ge, and SiGe films on Si substrates below 670 ºC by reactive CVD utilizing the spontaneous exothermic reaction between SiH4, GeH4, and F2. Mono-crystalline SiGe epitaxial films with Ge composition ranging from 0.1 to 1.0 have been successfully grown by reactive CVD for the first time.This technique has also been successfully applied to the growth of these films on silicon-on-glass substrates by a 20 - 50 ºC increase of the heating temperature. Over 10 μm thick epitaxial films at 3 nm/s growth rate are obtained. The etch pit density of the 5.2 μm-thick Si0.5Ge0.5 film is as low as 5 x 106 cm-2 on top. Mobilities of the undoped SiGe and Si films are 180 to 550 cm2/Vs, confirming the good crystallinity of the epitaxial films.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 721
Author(s):  
Yahia F. Makableh ◽  
Hani Alzubi ◽  
Ghassan Tashtoush

The design and optimization of a nanostructured antireflective coatings for Si solar cells were performed by using response surface methodology (RSM). RSM was employed to investigate the effect on the overall optical performance of silicon solar cells coated with three different nanoparticle materials of titanium dioxide, aluminum oxide, and zinc oxide nanostructures. Central composite design was used for the optimization of the reflectance process and to study the main effects and interactions between the three process variables: nanomaterial type, the radius of nanoparticles, and wavelength of visible light. In this theoretical study, COMSOL Multiphysics was utilized to design the structures by using the wave optics module. The optical properties of the solar cell’s substrate and the three different nanomaterial types were studied. The results indicated that ZnO nanoparticles were the best antireflective coating candidate for Si, as the ZnO nanoparticles produced the lowest reflection values among the three nanomaterial types. The study reveals that the optimum conditions to reach minimum surface reflections for silicon solar cell were established by using ZnO nanoparticles with a radius of ~38 nm. On average, the reflectance reached ~5.5% along the visible spectral range, and approximately zero reflectance in the 550–600 nm range.


2017 ◽  
Vol 5 (35) ◽  
pp. 9005-9011 ◽  
Author(s):  
Ju Hwan Kim ◽  
Dong Hee Shin ◽  
Ha Seung Lee ◽  
Chan Wook Jang ◽  
Jong Min Kim ◽  
...  

The co-doping of graphene with Au nanoparticles and bis(trifluoromethanesulfonyl)-amide is employed for the first time to enhance the performance of graphene/porous Si solar cells.


1988 ◽  
Vol 126 ◽  
Author(s):  
M. Razeghi ◽  
M. Defour ◽  
F. Omnes ◽  
J. Nagle ◽  
P. Maurel ◽  
...  

ABSTRACTHigh quality GaAs and InP have been grown on silicon substrates, using low pressure metalorganic chemical vapor deposition technique. The growth temperature is 550°C and the growth rate 100 A/min.Photoluminescence, X-ray diffraction and electrochemical profiling verified the high quality of these layers. The use of superlattices as buffer layers, (GaAs/GaInP) in the case of GaAs/Si and (GaInAsP/InP) in the case of InP/Si, decreased the amount of misfit dislocations in the epitaxial layer. Carrier concentrations as low as 5.1015 cm−3 have been measured by electrochemical profiling.


2019 ◽  
Vol 7 (6) ◽  
pp. 1720-1725 ◽  
Author(s):  
Qingzhi Chen ◽  
Jay A. Switzer

Silver films were deposited epitaxially for the first time onto low-index, single-crystal silicon wafers through an electrochemical method in an aqueous silver acetate bath.


1997 ◽  
Vol 170 (1-4) ◽  
pp. 447-450 ◽  
Author(s):  
T. Soga ◽  
T. Kato ◽  
K. Baskar ◽  
C.L. Shao ◽  
T. Jimbo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document