Shallow Junction Formation by the Redistribution of Species Implanted into Cobalt Silicide

1987 ◽  
Vol 92 ◽  
Author(s):  
Brian M. Ditchek ◽  
Marvin Tabasky Marvin Tabasky ◽  
Emel S. Bulat

Interest in CoSi2 as a metallization for very large scale integrated circuits (VLSI) has grown rapidly since the recent demonstration of a simple self-aligned process performed by rapid thermal annealing.1-4 Using a rapid thermal anneal (RTA) to directly silicide Co on Si yields smooth low-sheet-resistance films with little or no lateral diffusion and low contact resistance. In addition, it has been shown that rapid thermal annealing can result in reasonable quality epitaxial CoSi2 on (111) Si wafers.5 An important advantage of CoSi2 over the more commonly used TiSi2 metallization is the relative simplicity of its self-aligned silicidation process. Due to the low reactivity of Co with SiO2, a simple two-step self-alignment process is possible instead of the three-step process necessary with TiSi2.6 The primary disadvantage of CoSi2 is the amount of Si consumed for equal silicide sheet resistance. For example, to yield a silicide sheet resistance of 1.5 1/LD, Van den Hove 4 finds that compared to the TiSi, process, the CoSi, process would consume an additional 24 nm of Si. (This disadvantage can be minimized if very shallow junctions can be formed under the CoSi2.)

Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


2002 ◽  
Vol 716 ◽  
Author(s):  
G.Z. Pan ◽  
E.W. Chang ◽  
Y. Rahmat-Samii

AbstractWe comparatively studied the formation of ultra thin Co silicides, Co2Si, CoSi and CoSi2, with/without a Ti-capped and Ti-mediated layer by using rapid thermal annealing in a N2 ambient. Four-point-probe sheet resistance measurements and plan-view electron diffraction were used to characterize the silicides as well as the epitaxial characteristics of CoSi2 with Si. We found that the formation of the Co silicides and their existing duration are strongly influenced by the presence of a Ti-capped and Ti-mediated layer. A Ti-capped layer promotes significantly CoSi formation but suppresses Co2Si, and delays CoSi2, which advantageously increases the silicidation-processing window. A Ti-mediated layer acting as a diffusion barrier to the supply of Co suppresses the formation of both Co2Si and CoSi but energetically favors directly forming CoSi2. Plan-view electron diffraction studies indicated that both a Ti-capped and Ti-mediated layer could be used to form ultra thin epitaxial CoSi2 silicide.


2004 ◽  
Vol 810 ◽  
Author(s):  
K.Y. Lee ◽  
S.L. Liew ◽  
S.J. Chua ◽  
D.Z. Chi ◽  
H.P. Sun ◽  
...  

ABSTRACTPhase formation and interfacial microstructure evolution of nickel germanides formed by rapid thermal annealing in a 15-nm Ni/Ge (100) system have been studied. Coexistence of a NiGe layer and Ni-rich germanide particles was detected at 250°C. Highly textured NiGe film with a smooth interface with Ge was observed. Annealing at higher temperatures resulted in grain growth and severe grooving of the NiGe film at the substrate side, followed by serious agglomeration above 500°C. Fairly low sheet resistance was achieved in 250-500°C where the NiGe film continuity was uninterrupted.


1985 ◽  
Vol 54 ◽  
Author(s):  
J. Narayan ◽  
T. A. Stephenson ◽  
T. Brat ◽  
D. Fathy ◽  
S. J. Pennycook

ABSTRACTThe formation of titanium suicide over polycrystalline silicon has been investigated after rapid thermal annealing treatment in nitrogen and argon ambients. After rapid thermal annealing 300 Å thick titanium overlayer at 900°C for 10 seconds, the sheet resistance of about 3 Ω/□ was achieved, which decreased to 2 Ω/□ after 1100°C / 10s treatment. The TiSi2 Phase was found to be stable after RTA treatments up to 1100°C /10s with no or negligible migration of titanium along the grain boundaries in polycrystalline silicon. In the nitrogen ambient, an external layer (titanium rich, mixture of titanium oxide and nitride) was observed to form after the RTA treatment, but the surface was found clean in the argon ambient.


1997 ◽  
Vol 470 ◽  
Author(s):  
A. T. Fiory

ABSTRACTTemperatures for lamp-heated rapid thermal processing of wafers with various back-side films were controlled by a Lucent Technologies pyrometer which uses a/c lamp ripple to compensate for emissivity. Process temperatures for anneals of arsenic and boron implants were inferred from post-anneal sheet resistance, and for rapid thermal oxidation, from oxide thickness. Results imply temperature control accuracy of 12°C to 17°C at 3 standard deviations.


1991 ◽  
Vol 224 ◽  
Author(s):  
Po-Ching Chen ◽  
Jian-Yang Lin ◽  
Huey-Liang Hwang

AbstractTitanium silicide was formed on the top of Si wafers by arsenic ion beam mixing and rapid thermal annealing. Three different arsenic-ion mixing conditions were examined in this work. The sheet resistance, residue As concentration post annealing and TiSi2 phase were characterized by using the* four-point probe, RBS and electron diffraction, respectively. TiSi2 of C54 phase was identified in the doubly implanted samples. The thickness of the Ti silicide and the TiSi2/Si interface were observed by the cross-sectional TEM.


1985 ◽  
Vol 52 ◽  
Author(s):  
M. Tabasky ◽  
E. S. Bulat ◽  
B. M. Ditchek ◽  
M. A. Sullivan ◽  
S. Shatas

ABSTRACTRapid thermal annealing is used to form cobalt silicide directly on unimplanted as well as B, As, and P implanted wafers. The films are characterized by sheet resistance, X-ray diffraction, SEM, SIMS, and contact resistance measurements. The direct silicidation of cobalt on Si by rapid thermal annealing yields smooth, low resistivity films with minimal dopant redistribution.


1996 ◽  
Vol 429 ◽  
Author(s):  
X. W. Lin ◽  
D. Pramanik

AbstractRapid thermal annealing (RTA) induced reactions between Ti thin films and Si wafers were characterized by sheet resistance measurements. It was found that the standard deviation a of the measurements is RTA-temperature dependent, and strongly correlates with the mean sheet resistance R. A specific temperature was identified, corresponding to a sharp σ peak in the temperature regime associated with the C49-C54 TiSi2 phase transition. This temperature is characteristic of materials parameters such as Ti thickness and substrate doping species, and can be used to accurately monitor or compare the calibration of RTA systems.


Very large scale integrated circuits (VLSI) have been possible owing to the shrinking of metal-oxide semiconductor field-effect transistors (MOSFETs). By reducing the dimensions of the device it is possible to have high density on the chip. This increases the number of logical functions that can be implemented on a given dimension of the chip. Along with the advantages associated with the shrinking of the devices, it also has certain drawbacks commonly known as short-channel effects. Due to these effects, device characteristics deviate from its expected values. There are many techniques through which these deviations can be minimized. One of the promising and highly researched techniques these days is the use of Multi-gate (MG) transistors in VLSI. Double-gate (DG) transistor is one among MG transistors. In DG MOSFET, substrate is surrounded by gates from two opposite sides. This leads to more control over the channel electrons by the gate terminals. In this paper, the consequence of change of various device constraints on the electrical characteristics of the DG MOSFETs will be investigated. Through the results, one can know to what extent the electrical properties changes when the dimensions and/or material properties are changed. This will be very helpful in determining the maximum current associated with those dimensions of DG MOSFETs.


Sign in / Sign up

Export Citation Format

Share Document