Light Emission From Er-Doped Si: Materials Properties, Mechanisms, and Device Performance

MRS Bulletin ◽  
1998 ◽  
Vol 23 (4) ◽  
pp. 25-32 ◽  
Author(s):  
Salvatore Coffa ◽  
Giorgia Franzo ◽  
Francesco Priolo

The achievement of efficient room-temperature light emission from crystalline Si is a crucial step toward the achievement of fully Si-based optoelec-tronics. However Si, the leading semiconductor in microelectronic applications, is unable to perform as well in the optical arena. In fact due to its indirect bandgap, Si does not exhibit efficient light emission and has been considered unsuitable for optoelectronic applications. Several efforts have been dedicated to overcoming this limitation. Among them, luminescence through the incorporation of rare-earth impurities has been considered In particular, erbium doping has been demonstrated as a valid approach toward achievement of efficient light emission from Si.1−43 Erbium is a rare-earth ion that, in its 3+ state, can emit photons at 1.54 μm because of an intra-4f shell transition between the first excited state (4I13/2) and the ground state (4I15/2). This emission is particularly attractive because its wavelength falls inside a window of maximum transmission for the silica optical fibers. When Er ions are inserted within a Si matrix, the excitation (4I15/2 → 4I13/2) can be achieved through the carriers provided by the host, whereas the subsequent deexcitation (4I13/2 → 4I15/2) can result in a sharp, atomlike light emission.

2005 ◽  
Vol 108-109 ◽  
pp. 755-760 ◽  
Author(s):  
Wolfgang Skorupa ◽  
J.M. Sun ◽  
S. Prucnal ◽  
L. Rebohle ◽  
T. Gebel ◽  
...  

Using ion implantation different rare earth luminescent centers (Gd3+, Tb3+, Eu3+, Ce3+, Tm3+, Er3+) were formed in the silicon dioxide layer of a purpose-designed Metal Oxide Silicon (MOS) capacitor with advanced electrical performance, further called a MOS-light emitting device (MOSLED). Efficient electroluminescence was obtained for the wavelength range from UV to infrared with a transparent top electrode made of indium-tin oxide. Top values of the efficiency of 0.3 % corresponding to external quantum efficiencies distinctly above the percent range were reached. The electrical properties of these devices such as current-voltage and charge trapping characteristics, were also evaluated. Finally, application aspects to the field of biosensing will be shown.


1996 ◽  
Vol 452 ◽  
Author(s):  
L. Tsybeskov ◽  
K. L. Moore ◽  
P. M. Fauchet ◽  
D. G. Hall

AbstractSilicon-rich silicon oxide (SRSO) films were prepared by thermal oxidation (700°C-950°C) of electrochemically etched crystalline silicon (c-Si). The annealing-oxidation conditions are responsible for the chemical and structural modification of SRSO as well as for the intrinsic light-emission in the visible and near infra-red spectral regions (2.0–1.8 eV, 1.6 eV and 1.1 eV). The extrinsic photoluminescence (PL) is produced by doping (via electroplating or ion implantation) with rare-earth (R-E) ions (Nd at 1.06 μm, Er at 1.5 μm) and chalcogens (S at ∼1.6 μm). The impurities can be localized within the Si grains (S), in the SiO matrix (Nd, Er) or at the Si-SiO interface (Er). The Er-related PL in SRSO was studied in detail: the maximum PL external quantum efficiency (EQE) of 0.01–0.1% was found in samples annealed at 900°C in diluted oxygen (∼ 10% in N2). The integrated PL temperature dependence is weak from 12K to 300K. Light emitting diodes (LEDs) with an active layer made of an intrinsic and doped SRSO are manufactured and studied: room temperature electroluminescence (EL) from the visible to 1.6 μmhas been demonstrated.


1991 ◽  
Vol 244 ◽  
Author(s):  
L. R. Copeland ◽  
W. A. Reed ◽  
M. R. Shahriari ◽  
T. Iqbal ◽  
P. Hajcak ◽  
...  

ABSTRACTRare earth ions can easily be incorporated into fluoride glasses in moderate to large concentrations and, due to their low phonon energy, these glasses appear to have many advantages over oxide glasses as hosts for rare earth ions used in optical amplifiers and lasers. We have therefore investigated the optical properties of Pr3+, Pr3+/Yb3+ and Pr3+/Yb3+/Lu3+ doped bulk AIF3-based glass samples as a function of rare earth ion concentration. We find that the addition of 2 wt% of Yb increases the fluorescence of Pr3+ at 1.32 μm by a factor of 35 when excited with 488 nm radiation. The fluorescence intensity and excited state lifetimes are found to be comparable to those measured for Pr in a ZBLAN host. Since it has also been demonstrated that optical fibers drawn from AIF3-based glasses exhibit relatively low loss (< 0.05 dB/m) and posses superior chemical durability compared to other fluotide glasses, it is possible that AIF3 glasses may become the fluoride glass of choice for practical fiber laser and amplifier applications.


Author(s):  
Wolfgang Skorupa ◽  
J.M. Sun ◽  
S. Prucnal ◽  
L. Rebohle ◽  
T. Gebel ◽  
...  

1997 ◽  
Vol 474 ◽  
Author(s):  
T. S. Kaplan ◽  
M. T. Salazar ◽  
Q. Huang ◽  
A. Barfknecht ◽  
Z. Lu

ABSTRACTBetter knowledge of the relationships between YBa2Cu307-δ (YBCO) materials properties and the RF performance of devices made from these materials should lead to improved device performance and yields. A variety of materials tests were performed on our production YBCO films which were patterned into standard microstrip resonators. The materials parameters were then compared with the unloaded Q of the resonators at 77 K. As expected, films with higher Q's tended to have higher Tc, higher Jc, greater film thickness, and better crystallinity. The last was based on narrower YBCO rocking curve peak, lower second phase density (judged by lower resistivity and greater θ-2θ (005) peak area), and a narrower θ-2θ (005) peak. The room temperature sheet resistance was found to be a useful predictor of microwave performance for films that are otherwise similar.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1847
Author(s):  
Yan Ma ◽  
Yujie Miao ◽  
Guomei Mu ◽  
Dunmin Lin ◽  
Chenggang Xu ◽  
...  

Great expectations have been held for the electrochemical splitting of water for producing hydrogen as a significant carbon-neutral technology aimed at solving the global energy crisis and greenhouse gas issues. However, the oxygen evolution reaction (OER) process must be energetically catalyzed over a long period at high output, leading to challenges for efficient and stable processing of electrodes for practical purposes. Here, we first prepared Fe-MOF nanosheet arrays on nickel foam via rare-earth erbium doping (Er0.4 Fe-MOF/NF) and applied them as OER electrocatalysts. The Er0.4 Fe-MOF/NF exhibited wonderful OER performance and could yield a 100 mA cm−2 current density at an overpotential of 248 mV with outstanding long-term electrochemical durability for at least 100 h. At large current densities of 500 and 1000 mA cm−2, overpotentials of only 297 mV and 326 mV were achieved, respectively, revealing its potential in industrial applications. The enhancement was attributed to the synergistic effects of the Fe and Er sites, with Er playing a supporting role in the engineering of the electronic states of the Fe sites to endow them with enhanced OER activity. Such a strategy of engineering the OER activity of Fe-MOF via rare-earth ion doping paves a new avenue to design other MOF catalysts for industrial OER applications.


2008 ◽  
Vol 590 ◽  
pp. 117-138 ◽  
Author(s):  
L. Rebohle ◽  
Wolfgang Skorupa

In this article we will give an overview of our work devoted to Si-based light emission which was done in the last years. Si-based light emitters were fabricated by ion implantation of rare earth elements into the oxide layer of a conventional MOS structure. Efficient electroluminescence was obtained for the wavelength range from UV to the visible by using a transparent top electrode made of indium-tin oxide. In the case of Tb-implantation the best devices reach an external quantum efficiency of 16 % which corresponds to a power efficiency in the order of 0.3 %. The properties of the microstructure, the IV characteristics and the electroluminescence spectra were evaluated. The electroluminescence was found to be caused by hot electron impact excitation of rare earth ions, and the electric phenomena of charge transport, luminescence centre excitation, quenching and degradation are explained in detail.


Sign in / Sign up

Export Citation Format

Share Document