scholarly journals Research of Bare-Free Drilling Fluids

2021 ◽  
Vol 21 (3) ◽  
pp. 123-130
Author(s):  
Ekaterina L. Leusheva ◽  
Nazim T. Alikhanov

Mining and geological conditions for the development of new fields are becoming more difficult every year. Accordingly, the requirements for ensuring the environmental and technological safety of the drilling process are becoming more and more important. To ensure such a process, it is necessary to use correctly selected drilling fluids with proper characteristics: rheological parameters sufficient for effective cleaning of the well bottom, density sufficient to create back pressure, fluid loss to ensure a high-quality filter cake. Modern environmental requirements dictate the abandonment of hydrocarbon-based solutions. But when using water-based solutions, there are no suitable solutions, especially with their high density, since the use of barite can lead to a decrease in reservoir productivity. In this regard, the analysis of the problem and the search for options for creating water-based drilling fluids, weighted without the addition of barite, having the properties of maintaining the stability of the wellbore, ensuring safe drilling and opening productive formations without damaging the reservoir characteristics, was carried out. Such a solution was found in changing the base of the drilling fluid - highly mineralized fluids or solutions based on saturated brines. Brines must be created on the basis of inorganic salts that have good solubility, for example, chlorides, bromides. Due to the content of salts, the fluids have an inhibitory effect, and depending on the volume of dissolution, the density of the drilling fluids can be controlled. The scientific works of foreign and domestic scientists analyzed in the article have been published over the past five years, which indicates the relevance of this development. The selected compositions are presented and theoretically investigated, which were also tested in the field conditions.

2020 ◽  
pp. 70-74
Author(s):  
V.V. Guliyev ◽  
◽  
◽  

Currently, a great number of drilling fluids with different additives are used all over the world. Such additives are applied to control the properties of the drilling mud. The main purpose for controlling is to achieve more effective and safe drilling process. This research work aims to develop Water-Based Mud (WBM) with a Coefficient of Friction (CoF) as low as Oil-Based Mud (OBM) and better rheological properties. As it is known, produced CoF by WBM is higher than OBM, which means high friction between wellbore or casing and drill string. It was the reason for studying the effect of nanosilica on drilling fluid properties such as lubricity, rheological parameters and filtrate loss volume of drilling mud. The procedures were carried out following API RP 13B and API 13I standards. Five concentrations of nanosilica were selected to be tested. According to the results obtained, it was defined that adding nanosilica into the mud decreases CoF of basic WBM by 26 % and justifies nanosilica as a good lubricating agent for drilling fluid. The decreasing trend in coefficient of friction and plastic viscosity for nanosilica was obtained until the concentration of 0.1 %. This reduction is due to the shear thinning or pseudoplastic fluid behavior. After 0.1 %, an increase at PV value trend indicates that it does not follow shear thinning behavior and after reaching a certain amount of dissolved solids in the mud, it acts like normal drilling fluid. The yield point of the mud containing nanoparticles was higher than the basic one. Moreover, a growth in the concentration leads to an increase in yield point value. The improvement of this fluid system cleaning capacity via hydraulics modification and wellhole stability by filter cake endurance increase by adding nanosilica is shown as well. The average well construction data of “Neft Dashlary” field was used for the simulation studies conducted for the investigation of hydraulics parameters of reviewed fluids for all series of experiments. The test results were accepted reliable in case of at least 3 times repeatability.


Author(s):  
Erfan Veisi ◽  
Mastaneh Hajipour ◽  
Ebrahim Biniaz Delijani

Cooling the drill bit is one of the major functions of drilling fluids, especially in high temperature deep drilling operations. Designing stable drilling fluids with proper thermal properties is a great challenge. Identifying appropriate additives for the drilling fluid can mitigate drill-bit erosion or deformation caused by induced thermal stress. The unique advantages of nanoparticles may enhance thermal characteristics of drilling fluids. The impacts of nanoparticles on the specific heat capacity, thermal conductivity, rheological, and filtration control characteristics of water‐based drilling fluids were experimentally investigated and compared in this study. Al2O3, CuO, and Cu nanoparticles were used to prepare the water-based drilling nanofluid samples with various concentrations, using the two-step method. Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) were utilized to study the nanoparticle samples. The nanofluids stability and particle size distribution were, furthermore, examined using Dynamic Light Scattering (DLS). The experimental results indicated that thermal and rheological characteristics are enhanced in the presence of nanoparticles. The best enhancement in drilling fluid heat capacity and thermal conductivity was obtained as 15.6% and 12%, respectively by adding 0.9 wt% Cu nanoparticles. Furthermore, significant improvement was observed in the rheological characteristics such as the apparent and plastic viscosities, yield point, and gel strength of the drilling nanofluids compared to the base drilling fluid. Addition of nanoparticles resulted in reduced fluid loss and formation damage. The permeability of filter cakes decreased with increasing the nanoparticles concentration, but no significant effect in filter cake thickness was observed. The results reveal that the application of nanoparticles may reduce drill-bit replacement costs by improving the thermal and drilling fluid rheological characteristics and decrease the formation damage due to mud filtrate invasion.


Author(s):  
Flávia M. Fagundes ◽  
Nara B.C. Santos ◽  
João Jorge R. Damasceno ◽  
Fábio O. Arouca

In order to avoid solid-liquid gravitational separation of particles in the drilling fluid and cuttings generated in this process, the oil industry has been developing drilling fluids with shear-thinning and thixotropic characteristics. In case of operational stops in the drilling process, the intense sedimentation of these particles can damage the equipment used and the well. In this context, this study simulated an operational stop to obtain information about stability of solids in a paraffin-based suspension with time-dependent shear-thinning behavior, which has already been used in current drilling processes. A long-term test using gamma-ray attenuation technique identified the separation dynamics of a set of micrometric particles belonging to and incorporated into the drilling fluid during operation. This test verified the typical regions of gravitational sedimentation and, through constant concentration curves, indicated that the sedimentation process did not occur at a constant rate. This study also proposed a constitutive equation for pressure on solids.


2020 ◽  
Author(s):  
Xian-Bin Huang ◽  
Jin-Sheng Sun ◽  
Yi Huang ◽  
Bang-Chuan Yan ◽  
Xiao-Dong Dong ◽  
...  

Abstract High-performance water-based drilling fluids (HPWBFs) are essential to wellbore stability in shale gas exploration and development. Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles. This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition, plugging and lubrication performances. Shale inhibition performance was studied by linear swelling test and shale recovery test. Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope (SEM) observation. Extreme pressure lubricity test was used to evaluate the lubrication property. Experimental results show that laponite has good shale inhibition property, which is better than commonly used shale inhibitors, such as polyamine and KCl. Laponite can effectively plug shale pores. It considerably decreases the surface area and pore volume of shale, and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm. Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string. Besides, laponite can reduce the fluid loss volume. According to mechanism analysis, the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.


2012 ◽  
Vol 727-728 ◽  
pp. 1878-1883 ◽  
Author(s):  
Bruno Arantes Moreira ◽  
Flávia Cristina Assis Silva ◽  
Larissa dos Santos Sousa ◽  
Fábio de Oliveira Arouca ◽  
João Jorge Ribeiro Damasceno

During oil well drilling processes in reservoir-rocks, the drilling fluid invades the formation, forming a layer of particles called filter cake. The formation of a thin filter cake and low permeability helps to control the drilling operation, ensuring the stability of the well and reducing the fluid loss of the liquid phase in the interior of the rocks. The empirical determination of the constitutive equation for the stress in solids is essential to evaluate the filtration and filter cake formation in drilling operations, enabling the operation simulation. In this context, this study aims to evaluate the relationship between the porosity and stress in solids of porous media composed of bridging agents used in drilling fluids. The concentration distribution in sediments was determined using a non-destructive technique based on the measure of attenuated gamma rays. The procedure employed in this study avoids the use of compression-permeability cell for the sediment characterization.


2014 ◽  
Vol 625 ◽  
pp. 526-529 ◽  
Author(s):  
Lim Symm Nee ◽  
Badrul Mohamed Jan ◽  
Brahim Si Ali ◽  
Ishenny Mohd Noor

It is an open secret that currently oil and gas industry is focusing on increasing hydrocarbon production through underbalanced drilling (UBD) and finding ways to ensure the drilling process is less harmful to the environment. Water-based biopolymer drilling fluids are preferred compared to oil based drilling fluids owing to the fact that it causes less pollution to the environment. This paper investigates the effects of varying concentrations of environmentally safe raw materials, namely glass bubbles, clay, xanthan gum and starch concentrations on the density of the formulated biopolymer drilling fluid to ensure that it is suitable for UBD. As material concentrations were varied, the density for each sample was measured at ambient temperature and pressure. Results showed that the final fluid densities are within acceptable values for UBD (6.78 to 6.86 lb/gal). It is concluded that the formulated water-based biopolymer drilling fluid is suitable to be used in UBD operation.


2021 ◽  
Vol 11 (4) ◽  
pp. 1715-1726
Author(s):  
Ved Prakash ◽  
Neetu Sharma ◽  
Munmun Bhattacharya ◽  
Ashok Raina ◽  
Man Mohan Gusain ◽  
...  

AbstractThis work investigates the efficacy of a biodegradable natural product, litchi leaves powder (LLP) as a filtration loss control agent in the water-based drilling fluid formulations. In order to evaluate the potential of litchi leaves powder (LLP), a strict protocol of experimentations according to API (American Petroleum Institute) standard has been followed. The experimental outcome showed that before hot rolling and after hot rolling of mud samples at 100 °C it was observed that 3–5% Concentration of LLP significantly increased the rheological parameters such as PV, YP and gelation of drilling fluid as compared to reference mud. Also, LLP reformed the filtration loss control characterization, suggesting a better biodegradable fluid loss reducing agent. After hot rolling at 100 °C for 18 h, the water-based drilling fluid with LLP as an additive showed a marked reduction in filtration control property as compared to reference Mud (RM). Experimental results concluded that 5% concentration of LLP significantly reduced the filtration loss of drilling fluid by 70.6% as compared to reference mud under the influence of 100 psi pressure. However, the conventional fluid loss additive CMC (LVG) reduced the filtration loss by maximum 67.5% as compared to reference mud. Therefore, LLP can be used as an alternative to CMC (LVG) in water-based drilling fluid with a maximum subsurface temperature of 100 °C.


Author(s):  
Titus Ntow Ofei ◽  
Itung Cheng ◽  
Bjørnar Lund ◽  
Arild Saasen ◽  
Sigbjørn Sangesland

Abstract Drilling fluids are complex mixtures of natural and synthetic chemical compounds used to cool and lubricate the drill bit, clean the wellbore, carry drilled cuttings to the surface, control formation pressure, and improve the function of the drill string and tools in the hole. The two main types of drilling fluids are water-based and oil-based drilling fluids, where the oil-based also include synthetic-based drilling fluids. Many rheological properties of drilling fluids are key parameters that must be controlled during design and operations. The base fluid properties are constructed by the interaction of the emulsified water droplets in combination with organophilic clay particles. The rheological properties resulted from this combination, along with the particle size distribution of weight materials are vital in controlling the physical stability of the microstructure in the drilling fluid. A weak fluid microstructure induces settling and sagging of weight material particles. The presence of sag has relatively often been the cause for gas kicks and oil-based drilling fluids are known to be more vulnerable for sag than water-based drilling fluids. Hence, the shear-dependent viscosity and elasticity of drilling fluids are central properties for the engineers to control the stability of weight material particles in suspension. In this study, we examined the stability of typical oil-based drilling fluids made for North Sea oilfield drilling application with oil-water-ratios (OWR) of 80/20 and 60/40. The structural character of the fluid samples was analyzed both at rest and dynamic conditions via flow and viscosity curves, amplitude sweep, frequency sweep, and time-dependent oscillatory sweep tests using a rheometer with a measuring system applying a grooved bob at atmospheric conditions. A high precision density meter was used to measure the density of the drilling fluid samples before and after each test. The measurement criteria used to rank the fluids stability include the yield stress as measured from flow curves and oscillatory tests, flow transition index, mechanical storage stability index, and dynamic sag index. We observed that between the two drilling fluids, the sample with OWR = 60/40 showed a stable dispersion with stronger network structure as evidenced by higher yield stress and flow transition index values, while the mechanical storage stability index and dynamic sag index recorded lower values. The results of this study enable drilling fluid engineers to design realistic oil-based drilling fluids with stable microstructure to mitigate settling and sagging of weight material particles for North Sea drilling operation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongyu Qiao ◽  
Zhongbin Ye ◽  
Lei Tang ◽  
Yiping Zheng ◽  
Xindong Wang ◽  
...  

The high-temperature stability and filtration property controlling of ultra-high-temperature water-based drilling fluids is a worldwide problem. To resolve this problem, a high-temperature-resistant quaternary copolymer (HTRTP) was synthesized based on molecular structure optimization design and monomer optimization. The physical and chemical properties were characterized by infrared spectroscopy, thermal weight, and spectrophotometry, and their temperature and salt resistance was evaluated in different drilling fluids, combined with adsorption, particle size analysis, and stability test. The results show that the thermal stability of HTRTP is very strong, and the initial temperature of thermal decomposition is above 320°C. The salt resistance of HTRTP is more than 162 g/L, and the calcium resistance is more than 5000 mg/L, which is equivalent to the foreign temperature-resistant polymer DCL-a, and is superior to the domestic metal ion viscosity increasing fluid loss agent PMHA-II for drilling fluids. It has excellent high-temperature resistance (245°C) and fluid loss reduction effect in fresh water base mud, fresh water weighted base mud, saturated brine base mud, and composite salt water base mud, which is better than foreign DCL-a (245°C) and domestic PMHA (220°C). The adsorption capacity of HTRTP on clay particles is large and firm, and the adsorption capacity changes little under the change of chemical environment and temperature. Both before and after HTRTP aging (245°C/16 h), the permeability of filter cake can be significantly reduced and its compressibility can be improved. By optimizing the particle size gradation of the drilling fluid and enhancing the colloid stability of the system, HTRTP can improve the filtration building capacity of the drilling fluid and reduce the filtration volume. The development of antithermal polymer provides a key treatment agent for the study of anti-high-temperature-resistant saline-based drilling fluid.


Sign in / Sign up

Export Citation Format

Share Document